
A MARSHALL CAVENDISH  26  COMPUTER COURSE IN WEEKLY PARTS 

LEARN PROGRAMMING - FOR FUN AND THE FUTURE 



Vol. 2 	 No 26 

BASIC PROGRAMMING 56 

OUT OF THIS WORLD 	 797 

A simple game to help you to understand trajectories—
and what happens when you launch off into space 

GAMES PROGRAMMING 26 
• 

SNAKES AND ADDERS 	 804 

A complete game that's easy to program in BASIC and 

surprisingly challenging to play 

BASIC PROGRAMMING 57 

1.V.77--- 111111111.11.AKING  THE HEADLINE 

If you want your titles and prompts to stand out, here are 

two ways you can create big, bold display typefaces 

PERIPHERALS 

Linking up the hardware—and the control commands you 
need to access it 

VOLUME INDEX 	 CENTRE PAGES 

For easy access to your growing collection of INPUT, an index to the 
contents of Volume 2 is contained in the centre pages of this issue. 

INDEX 
The last part of INPUT, Part 52, will contain a complete, cross-referenced index. 

For easy access to your growing collection, a cumulative index to the contents 

of each issue is contained on the inside back cover. 

PICTURE CREDITS 
Front cover, Graeme Harris. Page 797, Stephen Smyth. Pages 798, 799, 
Diagram/MC. Pages 800, 801, Jeremy Gower/MC. Pages 804-809, Phil Dobson. 
Pages 815-817, Micky Finn. Page 819, Chris Lyon. Pages 820-821, Ian Stephen. 
Pages 224-228, Graeme Harris. 

© Marshall Cavendish Limited 1984/5/6 
All worldwide rights reserved. 

The contents of this publication including software, codes, listings, 
graphics, illustrations and text are the exclusive property and copyright of 
Marshall Cavendish Limited and may not be copied, reproduced, 
transmitted, hired, lent, distributed, stored or modified in any form 
whatsoever without the prior approval of the Copyright holder. 

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA, 
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London. 

HOW TO ORDER 
YOUR BINDERS 
UK and Republic of Ireland: 
Send £4.95 (inc p & p) (1R£5.95) for 
each binder to the address below: 

Marshall Cavendish Services Ltd, 
Department 980, Newtown Road, 
Hove, Sussex BN3 7DN 

Australia: See inserts for details, or 
write to INPUT, Times Consultants, 
PO Box 213, Alexandria, NSW 2015 

New Zealand: See inserts for details, or 
write to INPUT, Gordon and Gotch 
'NZ) Ltd, PO Box 1595, Wellington 
Malta: Binders are available from local 
newsagents. 

here are Jour binders each holding 13 issues. 

BACK NUMBERS 
Back numbers are supplied at the regular cover price (subject to availability). 

UK and Republic of Ireland: 
INPUT, Dept AN, Marshall Cavendish Services, 
Newtown Road, Hove BN3 7DN 

Australia, New Zealand and Malta: 
Back numbers are available through your local newsagent. 

COPIES BY POST 
Our Subscription Department can supply copies to any UK address regularly at £1.00 each. 
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number 
of issues required by £1.00. Send your order, with payment to: 

Subscription Department, Marshall Cavendish Services Ltd, 
Newtown Road, Hove, Sussex BN3 7DN 

Please state the title of the publication and the part from which you wish to start. 

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders 
for binders, back numbers and copies by post should be made payable to: 

Marshall Cavendish Partworks Ltd. 

QUERIES: When writing in, please give the make and model of your computer,as 
well as the Part No., page and line where the program is rejected or where it does 
not work. We can only answer specific queries—and please do not telephone. Send 
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old 
Compton Street, London W IV SPA. 

INPUT IS SPECIALLY DESIGNED FOR: 
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and + ), 
COMMODORE 64 and 128, ACORN ELECTRON, BBC B 
and B+,and the DRAGON 32 and 64. 

In addition, many of the programs and explanations are also 
suitable forthe SINCLAIR ZX81, COMMODORE VIC 20, and 
TANDY COLOUR COMPUTER in 32K with extended BASIC. 
Programs and text which are specifically for particular machines 
are indicated by the following symbols: 

PECTRUM 1614 
S48K,128, and +   Nag   COMMODORE 64 and 128 

El ACORN ELECTRON, 
BBC B and B+   DRAGON 32 and 64 

D(81 	VIC 20  IT  1C.012IYUR COMPUTER 



TARGETING  
RANGING  

ROUNDING THE EARTH  
MANOEUVRING IN SPACE  

PLANETARY MOTION  

Reaching to the stars has long been 
one of Man's dreams. Following the 
article on objects in flight, this 
article shows how your micro can 
go some way to realizing that goal 

In the article about trajectories on pages 740 
to 747, you saw how the speed of a projectile 
can be split into a vertical and a horizontal 
component for analysis. You also saw how the 
range of a projectile can be varied by changing 
the angle of elevation and the speed at which it 
is shot. This article takes the study of moving 
bodies on to the next stage. It looks at the 
motion of objects in low gravity, and lets you 
examine their paths from distances near the 
Earth's surface to much farther out—in orbit. 

Before launching into space, enter the first 
program, which demonstrates how a know-
ledge of trajectories can help you to make 
your own shooting games more interesting 
and challenging. If you use a Commodore 64, 
you need to make special arrangements to put 
the machine into a high-resolution graphics 
mode, for all but the first program. You can 
either use a Simons' BASIC cartridge or first 
enter the machine code hi-res utility on pages 
748 to 751, and following articles. If you use 
the latter, you will need to prefix all the hi-res 
commands with an @. as explained in the 
first article. Vic users will need a Super 
Expander cartridge. 

10 FOR n=0 TO 31: READ a: POKE USR 
"a" + n,a: NEXT n 

20 BORDER 4: PAPER 0: INK 9: CLS 
70 LET a = INT (RND'5): LET b= INT 

(RND*5) + 26: LET c = INT (RND*8) +2: 
LET h =INT (RND*8) + 2: LET st = INT 
(RND*100 —c*8)+1: LET d=0  

90 LET d =d +1 
100 CLS : GOSUB 300 
110 INPUT "ANGLE?",a2 
120 IF a2>89 OR a2<1 THEN GOTO 110 
130 INPUT "SPEED?",e 
140 IF e = 0 THEN GOTO 100 
160 LET an =a2*(P1/180): LET x=0 
170 LET x2=x+(a+1)*8 

180 LET y=8+ (x*TAN an —450x/(e*e*COS 
an'COS an)) 

185 IF ATTR (21 — INT (y/8),INT (x2/8)) =6 
THEN GOTO 245 

190 IF y< =0 THEN GOTO 245 
200 IF (y>175 OR x2>255) AND d<10 

THEN GOTO 90 
205 IF y> 175 OR x2 > 255 THEN GOTO 270 
210 PLOT INK 8;x2,y: BEEP .01,y/10 
220 LET x = x + 3 
230 GOTO 170 
245 IF x2> =b*8+3 AND x2< =b'8+10 

THEN PRINT AT 21,b;CHR$ 145: FOR 
n=20 TO 0 STEP-1: BEEP .01,n: NEXT 
n: GOTO 270 

246 IF d<10 THEN GOTO 90 

270 IF d=10 THEN PRINT AT 
8,10;"USELESS!": GOTO 280 

275 PRINT INVERSE 1;AT 8,10;"GOOD 
SHOT!";AT 10,8;"YOU GOT IT IN III";d 

280 PAUSE 100: PRINT BRIGHT 1; PAPER 2; 
INK 6;AT 13,8;"HAVE ANOTHER GO": 
PAUSE 200 

290 GOTO 70 
300 PRINT INK 5;AT 21,a;CHR$ 144;AT 

21,b;CHR$ 146 
310 FOR n=1 TO c: PRINT AT 21 —n +1,12;: 

FOR m=1 TO c: PRINT INK 6;CHR$ 147;: 
NEXT m: NEXT n 

320 RETURN 
500 DATA 3,6,60,40,104,60,126,255 
510 DATA 36,90,165,90,60,155,24,60 
520 DATA 24,36,66,153,153,66,36,127 
530 DATA 28,42,85,170,127,170,85,255 

99 GOSUB 13000 
100 A%= RND(1)'8: B%= RND(1)*8 r 31: 

C%=RND(1)'8+2: CT= 0 
110 CT= CT +1 
115 PRINT "0":SYS 832 
120 GOSUB 9000 
130 GOSUB 7000 
140 GET 1$: IF 1$ < >CHR$(13) THEN 140 
150 GOSUB 9500 
160 PRINT"Q" 
170 INPUT "I§INANGLE";A2 
180 IF A2<0 OR A2> =90 THEN 170 
190 INPUT "EigggiggSPEED";E 



200 IF E=0 THEN 190 
205 GOSUB 9000 
210 AN =A2*(n/180):X3 = 8 
220 X=X3+8*(A%+1) 
230 H =8+ X3•TAN(AN)- X3T2/(Eir 

COS(AN)T2) 
240 Y =191 - H: GOSUB 10000: 

FR =H/2+20: WF =33: GOSUB 11000 
250 X3 = X3 + 7 
260 BY = 24576 + ((Y -1) AND 248)'40 + (X 

AND 504) + ((Y -1) AND 7) 
265 PO= (PEEK(BY)AND2T(7-XAND7)) 
270 IF X<311 AND H> =8 AND H<183 

AND P0=0 THEN 220 
273 HIT = ABS(X - (B%*8 + 4)) <6 AND 

H < 24 
275 IF PO >0 OR HIT THEN FR =20: 

WF =129: GOSUB'11000 
280 FOR D=1 TO 2000: NEXT 
290 GOSUB 9500 
310 IF CT<11 AND NOT HIT THEN 110 
320 PRINT"0" 
322 FORD =1 TO 99:NEXT 
325 GOSUB 9500 
330 IF HIT THEN PRINT "GOOD 

SHOT!":PRINT:PRINT"GOT IT IN"CT 
340 IF NOT HIT THEN PRINT "USELESS!" 
350 PRINT:PRINT"HAVE ANOTHER GO" 
360 FOR D=1 TO 4000: NEXT 
370 GOTO 100 
7000 V=1: FOR 1=31936 + AV8 TO 

31936 + AV8 + 7: POKEI,V: V= V'2: NEXT 
7010 FOR 1=31936+ B%*8 TO 

31936 + B%*8 + 7: POKEI,255: NEXT 
7020 FOR X=1 TO C%:FOR Y=1 TO 

C%: BA = 32256 + (13+ X)*8-Y*320 
7030 FOR I = BA TO BA + 7:POKE I,63:NEXT 
7040 NEXT:NEXT 
7099 RETURN 
9000 POKE 56576,150:POKE 53265,187:POKE 

53272,29:RETURN 
9500 POKE 56576,151:POKE 53265,27:POKE 

53272,21:RETURN 
10000 BY = 24576 + (YAND248)•40+ 

(XAND504)+ (YAND7):POKEBY,PEEK 
(BY)0R2T(7-(XAND7)) 

10010 RETURN 
11000 POKE 54296,10 
11010 POKE 54278,251 
11020 POKE 54276,WF 
11030 POKE 54273,FR 
11035 FOR D=1 TO 20:NEXT 
11040 POKE 54276,WF-1 
11050 RETURN 
12000 DATA 169,0,133,251,169,96,133, 

252,169,0,168,145,251,200,208,251 
12010 DATA 230,252,165,252,201,128, 

208,240 
12020 DATA 162,0,169,7,157,0,68,157, 

0,69,157,0,70,157,232,70,232,208, 
241,96 

13000 FOR Z=832 TO 875:READ X:POKE 
Z,X:NEXT Z: RETURN 

70 A= INT(RND(1)*5):B =19 -INT(RND 
(1)*5):C= INT(RND(1)*5)+ 2:H = INT 
(RND(1)*8)+2 

75 SS = INT(RND(1) . 1 00- C*8) +1:D = 0: 
S=36877:POKES +1,15 

90 D=D+1 
100 GRAPHIC2:GOSUB 300:FOR Z=1 TO 

1000:NEXT Z 
105 GRAPHIC 0 
110 INPUT "QANGLE";A2 
120 IF A2>89 OR A2<1 THEN 110 
130 INPUT "CISPEED";E 
140 IF E=0 THEN 130 
150 GRAPHIC 2:GOSUB 300 
160 AN =A2*(n/180):X= 0 
170 X2=X+((A+1)'53) 
180 Y=8+ (VTAN(AN)-4 .X*X/ 

(E'E'COS(AN))) 
190 IF Y< =0 THEN 245 
200 IF (Y>980 OR X2>1023) AND D<10 

THEN 90 
205 IF Y >980 OR X2 > 1023 THEN 270 
207 IF RDOT(X2,980-Y) =6 THEN 245 
210 POINT 1,X2,980-Y:POKE S, 

128+ (Y/10) 
220 LET X =X +10:POKE S,0 

230 GOTO 170 
245 IF X2> =1023-(19-B+1)'51 AND 

X2= <1023- ((19- B) . 51) THEN 400 
246 IF D <10 THEN 90 
270 IF D=10 THEN:GRAPHIC 0:PRINT 

"USELESS!":GOTO 280 
275 GRAPHIC 0:PRINT "GOOD SHOT!":PRINT 

"NYOU GOT IT IN";D 
280 PRINT "NHAVE ANOTHER GO":FOR 

Z=1 TO 2000:NEXT Z 
290 GOTO 70 
300 GRAPHIC2:CHAR 19,A,"/":CHAR 

18,B,"":CHAR 19,B,"n" 
310 FOR N =1 TO C:FOR M=1 TO C:CHAR 

20 - N,7 + M,"0":NEXT M,N:RETURN 
400 FOR Z=200 TO 127 STEP -1:POKE 

S,Z:NEXT Z:GOTO 270 

El 
10 VDU 23,225,3,6,60,40,104,60,126,255 
20 VDU 23,226,36,90,165,90,60,155,24,60 
30 VDU 23,227,24,36,66,153,153,66,36,127 
40 VDU 23,228,28,42,85,170,127,170,85,255 
50 MODE5:GCOL0,130:GCOL0,0: 

COLOUR130:COLOUR1 
60 REPEAT 
70 A = RND(4) -1:B = RND(4) +15: 

C=RND(8)+1:D=0 
80 REPEAT 
90 D=D+1 



100 CLG:PROCSETUP 
110 INPUTTAB(1,1)"ANGLE ❑ ",A2 
120 IF A2>89 OR A2<1 THEN 100 
130 INPUTTAB(1,2)"SPEED",E 
140 IF E=0 THEN 100 
150 AN = RAD A2:X =8 
160 REPEAT 
170 X2=X+641A+1) 
180 Y=64+ VTAN(AN) -X n 2/(E n 

COS(AN) A 2) 
190 PLOT69,X2,Y:SOUND1, -15, 

Y/5+20,2 
200 X=X+16 
210 UNTILX2 >1280 OR Y < =48 OR ABS 

POINT(X2 + 9,Y) =1 
220 IF Y< =48 THEN Y=32 
230 IF X2>1280 OR POINT (X2+ 

8,Y) = -1 THEN X2= 0:GOTO 250 
240 PRINTTAB((X2 +16)/64,31 - 

Y/32)CHR$(226);:SOUNDO, 
-15,6,20 

250 FOR W=1 TO 4000:NEXT 
260 CLG:UNTIL D=10 OR ABS 

(X2- Er64) <40 
270 IF D=10 THEN PRINTTAB(6,10) 

"USELESS!" ELSE PRINTTAB 
(4,10)"GOOD SHOT!""" ❑ E YOU 
GOT IT IN El";D;"." 

280 FOR W=1 TO 2500:NEXT: 
PRINT"'"HAVE ANOTHER GO...": 

FOR W=1 TO 2000:NEXT:UNTIL 0 
290 DEF PROCSETUP:LOCAL D 
300 PRINTTAB(A,30)CHR$(225) 

TAB( B,30)CHR$(227); 
310 FOR D=1 TO C:PRINTTAB(6,30- 

D +1) STRING$(C,CHR$(228));:NEXT 
320 ENDPROC 

10 PMODE4:DIM G(1),E(1),T(1),B(1) 
20 FORK =1536T02528 STEP32: 

READA:POKEK,A:NEXT 
30 GET(0,0) - (7,7),G,G: 

GET(0,8) - (7,15),E,G 
40 GET(0,16) - (7,23),T,G: 

GET(0,24) - (7,31 ),B,G 
50 DATA 3,6,60,40,104,60,126,255,36, 

90,165,90,60,155,24,60 
60 DATA 24,36,66,153,153,66,36,127, 

28,42,85,170,127,170,85,255 
70 A= RND(51)-1:B= RND(51) +197: 

C= RND(8):H = RND(8) + 1:ST= RND 
(100 - C*8) + 70:D = 0:CLS 

80 = D + 1 
90 PCLS:SCREEN1,1:GOSUB320 
100 IF 1NKEY$="" THEN 100 
110 PRINT:INPUT" ANGLE ❑ ";A2 
120 IF A2>89 OR A2<1 THEN 110 
130 INPUT" ❑ SPEED ❑ ";E 
140 IF E=0 THEN 130 
150 SCREEN1,1 
160 AN =-ATATN(1)/45:X= 0 
170 X2=X+A+8 
180 Y=183- (X*TAN(AN)-4*X . X/ 

(FE`COS(AN)*COS(AN))) 
190 IF Y>190 THEN 250 
200 IF X2> =ST AND X2<ST+C'8+7 

AND Y>183-H'8 THEN 250 
210 IF Y >0 THENPSET(X2,Y,5): 

SOUND200-Y,1 ELSESOUND255 
AND(200-Y),1 

220 X=X+3 
230 IF X2 <255 THEN 170 
240 GOT0290 
250 IF Y>190 THENY=184 
260 PUT(X2 - 4,Y) - (X2 + 3,Y + 7), 

E,PSET:PLAY"T5001ADECBFGAEDBG DE" 
270 PUT(A,184)- (A +7,191),G, 

PSET:PUT(B,184) - (B + 7,191), 
T,PSET 

280 IF X2> =B AND X2<B+7 THEN 300 
290 IF D<10 THEN 80 
300 CLS:IFD =10 THENPRINT@41, 

"USELESS !" ELSEPRINT@41,"GOOD 
SHOT !":PRINT@164,"YOU GOT 
IT IN";D;"SHOTS." 

310 FORW=1T03000:NEXT:PRINT: 
PRINT" 0 ❑ HAVE ANOTHER GO...": 
FORW = 1T01200:NEXT:GOT070 

320 FORX=OTOC:FORY=OTOH:PUT 
(ST + V8,184 -811 ) - (ST + X*8+7, 

191 -8*Y),B,PSET 
330 NEXTY,X 
340 PUT(A,184) - (A +7,191),G, 

PSET:PUT(B,184) - (B +7,191), 
T,PSET:RETURN 

The program prompts you to enter take-off 
speed and angle of elevation to get a shot to 
travel from a point near the bottom left of the 
screen to a target near the bottom right. The 
game is made difficult by setting the firing 
point and the target at random distances apart 
in each series of attempts-and, even more 
importantly, by having a barrier of random 
size at a random point between starting and 
finishing points. Whatever trajectory you 
pick must be high enough to lob the shot over 
this barrier. 

RANGING 
This program gives a good example of how 
well the brain makes judgements. Merely by 
looking at the positions of the gun, obstacle 
and target, you can estimate the speed and 
angle required to produce a curve that sails 
the shot neatly over the obstacle to hit the 
target. With a little practice, you will find it 
possible to score a surprisingly high propor-
tion of direct hits. 

But ranging like this is actually a bit hit-
and-miss, especially when you do not have a 
clear side view. What is far more likely to 
happen is that you know the approximate 
distance of the target, and have to calculate 
the angle and speed required. By seeing 
whether the shot is under or over the required 
length, you can make progressively more 
accurate calculations. 

The next program shows how this is done. 
Clear the first program (after SAVEing it if you 
want to re-use the game), and enter these 
lines. (Commodore 64 users should remem-
ber to fit a Simons' BASIC cartridge or enter 
their machine code routine first.) 

10 CLS 
20 INPUT "FIRING SPEED (1-10000 m/s)",sp 
30 IF sp <1 OR sp >10000 THEN GOTO 20 
40 INPUT AT 4,0;"FIRING ANGLE (1-90 

DEG)",a 
50 IF a<1 OR a> =90 THEN GOTO 40 
60 LET a = e(P1/180) 
70 LET r=sp'sp*SIN (2"a)/10 
80 PRINT AT 10,3;"THE RANGE IS E";INT 

(r + .5);" ❑ metres" 
90 PRINT AT 21,1;"ANY KEY FOR ANOTHER 

GO (0 END)" 
100 PAUSE 0: LET a$=1NKEY$: IF a$=" 

THEN GOTO 100 
110 IF a$< >"0" THEN GOTO 10 



THEN GOTO 100 
110 IF a$< >"0" THEN GOTO 10 

30 PRINT "DECCENTRICITY 
(0.1-1.9)":INPUT E 

40 IF E<.1 OR E>1.9 THEN 30 
50 HIRES 0,1:X=160:Y=100 — E*50 
60 FOR A=0 TO 2'n+ .2 STEP.1 
70 LINE X,Y,160+80'SIN(A), 

100 —(E*50'COS(A)),1 
80 X=160 +80'SIN(A):Y= 

100— (E . 50*COS(A)):NEXT A 
90 FOR Z=1 TO 2000:NEXT Z:NRM:RUN 

30 PRINT"DECCENTRICITY":PRINT 
"(0.1-1.9)":INPUT E 

40 IF E<.1 OR E>1.9 THEN 30 
50 GRAPHIC 2:X=512:Y=512—F250: 

POINT 1,X,Y 
60 FOR A=0 TO rit + .2 STEP.1 
70 DRAW 1 TO 512 + 250'SIN(A), 

512— (E*250'COS(A)):NEXT A 
90 FOR Z=1 TO 2000:NEXT Z:GRAPHIC 

0:RUN 

20 PRINT "ID FIRING SPEED (1-10000 
M/S)":INPUT SP 

30 IF SP <1 OR SP >10000 THEN 20 
40 PRINT "OFIRING ANGLE(1-90 

DEG)":INPUT A 
50 IF A<1 OR A>89 THEN 40 
60 A = A . (n/180) 
70 R =SP*SP'SIN(2•A)/10 
80 PRINT "OTHE RANGE IS";INT(R +.5); 

"METRES" 
90 PRINT "MHIT ANY KEY FOR ANOTHER 

GO (0 TO END)" 
100 GET D$:IF D$="" THEN 100 
110 IF D$< >"0" THEN RUN 

10 MODE1 
20 INPUT TAB(5,2)"FIRING SPEED (1-10000 

m/s) ❑ ",SP 
30 IF SP <1 OR SP >10000 THEN GOTO 20 
40 INPUT TAB(5,4)"FIRING ANGLE (1-90 

DEG)1=7",A 
50 IF A<1 OR A>90 THEN PRINT 

TAB(30,4)"111111111111111":GOTO 40 
60 A= RAD A 
70 R -= SP`SP*SIN(2*A)/10 
80 PRINT TAB(8,15)"THE RANGE 

ISE";INT(R +.5);"Emetres" 
90 PRINT TAB(4,30)"ANY KEY FOR ANOTHER 

GO (0 TO END)" 
100 D =GET 
110 IF D=48 THEN END ELSE RUN 

1111 
10 CLS 
20 INPUT" ❑ FIRING SPEED (1-10000 

M/S) ❑ ❑ ❑ ";SP 
30 IF SP<1 OR SP>10000 THEN 10 
40 INPUT" III FIRING ANGLE (1-90 

DEG) ❑ ";A 
50 IF A<1 OR A> =90 THEN 40 
60 A =A'ATN(1)/45 
70 R=SP'SP . SIN(2*A)/10 
80 PRINT:PRINT" ❑ THE RANGE 

IS";INT(R +.5);"METRES" 
90 PRINT:PRINT" ❑ ANY KEY FOR ANOTHER 

G0 ❑❑❑❑❑❑❑❑❑❑ 
(0 TO END)" 

100 A$=INKEY$:IF A$="" THEN 100 
110 IF A$="0" THEN CLS:END ELSE 10 

This program lets you input values for initial 
speed (Line 20) and angle of elevation (Line 
40). Line 70 then calculates and displays the 
range that these values would give to a 
projectile. The variable R is the range, SP is 
the speed, A is the angle, and the 10 is the 
approximate value of gravity near the Earth's 
surface (9.81 is the actual figure). 

The effect of friction in the air is ignored, 
but in real life trials it must be accounted for. 
The highest firing speed of a cannon is more 
than 2000 m/s. This has been fired straight 
up to send objects high above the Earth for 
research. The objects reached as high as 180 
km, but without air friction the height would 
have been as much as 250 km. 

ROUNDING THE EARTH 
If the object is fired at an angle that takes it 
high above the Earth, the effect of friction is 
less, but if you wish it to have very long range, 
you must take into account the curvature of 
the Earth. One of the first people to consider 
the longest possible range of a projectile over 
the Earth's surface was the British scientist, 
Sir Isaac Newton. 

Newton imagined a powerful gun at the top 
of a mountain high enough to be out of the 
Earth's atmosphere. Shots fired at increasing 
muzzle speed would travel increasingly far-
ther on a flat Earth. But because the Earth 
curves, the surface falls away from the shot, 
which can travel to an even greater distance 
than if the Earth were flat. 

Eventually, Newton argued, a shot would 
start so fast that it would never hit the ground, 
but should, in theory, hit him in the back of 
the head. As fast as the cannonball fell to the 
ground, the ground would 'fall' away beneath 
it, so the shot would remain in 'free fall' for 
ever—it would orbit the Earth. 

Once an object has escaped from a planet's 
gravity, its speed and distance from the planet 
determine the type of orbit it follows—
circular or elliptical. 

To be able to make predictions and mea-
surements about a planet or satellite, its orbit 
must be known precisely—we must know the 
exact shape of the ellipse. The degree of 
`squashedness' of an ellipse is its eccentricity 
(E). This is the proportion of the length of the 
ellipse to its width. If E equals one, the ellipse 
is as wide as it is long—it is a circle. 

Enter and RUN the next program to see the 
effect of varying E between values less than 
one and values greater than one: 

a 
10 CLS 
30 INPUT "ECCENTRICITY (0.1-1.9)",e 
40 IF e<.1 OR e>1.9 THEN GOTO 30 
50 PLOT 127,87 + e'40 
60 FOR a = 0 TO 213 1+ .2 STEP .1 
70 DRAW 127+ (40*SIN a) — PEEK 

23677,87+ (e . 40"COS a) — PEEK 23678 
80 NEXT a 
90 PRINT AT 21,1;"ANY KEY FOR ANOTHER 

GO (0 END)" 
100 PAUSE 0: LET a$=1NKEY$: IF a$ = "" 



10 MODE1 
20 VDU29,650;500; 
30 INPUT TAB(0,2)"ECCENTRICITY"' 

"(0.1-1.9) ❑ ",E 
40 IF E< 0.1 OR E>1.9 THEN RUN 
50 MOVE 0,E'250 
60 FOR A=0 TO 2'P1+0.2 STEP 0.1 
70 DRAW 250'SIN A,E'250*COS A 
80 NEXT A 
90 PRINT TAB(4,30)"ANY KEY FOR ANOTHER 

GO (0 TO END)" 
100 D = GET 
110 IF D=48 THEN END ELSE RUN 

IC !HI 
10 PMODE4,1:PCLS 
30 CLS:INPUT"ECCENTRICITY (.1 TO 1.9)1=1";E 
40 IF E<.1 OR E>1.9 THEN 30 
50 SCREEN1,1 
70 CIRCLE(128,96),48,5,E 
100 A$=INKEY$:IF A$="" THEN 100 
110 IF A$="0" THEN CLS:END ELSE 30 

This program loops between Lines 30 and 
110 to draw ellipses for which you INPUT the 

value of E at Line 30. The Dragon and Tandy 
programs use a CIRCLE command (Line 70) to 
draw the curves, but the others step through a 
FOR ... NEXT loop (Lines 60 to 80) and DRAW 
between each point. 

Enter values of E in the range shown on the 
screen and verify that E =1 gives a circle, E 
less than 1 gives downwards squashed ellipses 
and E greater than 1 gives sideways squashed 
ellipses. (On the Commodores E =1.5 looks 
more like a circle). So any orbit can be 
considered as an ellipse with suitable E value. 

MANOEUVRING IN SPACE 
Once in orbit, a satellite or spacecraft needs 
no power to keep it there, because it is falling 
freely. Any use of the rockets will move the 
craft out to a higher orbit or in to a lower one. 

The smaller the radius of the orbit, the 
faster the object must move. Enter the next 
program to see how this works: 

a 
10 CLS : LET gc= 0 
40 LET r=40: LET rt=10+ INT (RND'60): IF 

ABS (r—rt) <10 THEN GOTO 40 
50 CIRCLE 127,87,4 

60 LET s= .1: LET a = 0: LET at= INT 
(RND*10)+1: LET f=0  

80 LET a=a+s 
100 LET at= at + .1'SQR ((40/rt)I3) 
110 IF INKEY$="7" AND r<85 THEN LET 

f=f+1: LET r=r+2: LET s=s•SQR 
Mr-2)/RM: GOTO 130 

115 IF INKEY$="6" AND r>8 THEN LET 
f =f +1: LET r= r— 2: LET s=s'SQR 
(((r+ 2)/03): GOTO 130 

120 FOR p=1 TO 5: NEXT p 
130 LET x CSIN a: LET y = r'COS a 
140 LET xt= rt'SIN at: LET yt= reCOS at 
150 PLOT 127+ x,87 + y 
160 BEEP .02,r/2 
165 IF gc < > 0 THEN PLOT OVER 

1;127 + ox,87 + oy 
170 PLOT OVER 1;127 + xt,87+ yt: LET 

ox = xt: LET oy= yt: LET gc =1 
180 IF ABS (x — xt) >4 OR ABS (y — yt) > 4 

THEN GOTO 80 
190 PRINT AT 20,12;f;" ❑ BURNS" 
200 GOTO 200 

10 HIRES 0,1 
20 POKE 54296,15:POKE 54277,64 
40 R =30:RT=INT(RND(1)*70) +10:IF 

ABS(R — RT) <20 THEN 40 
50 TEXT 157,97,"',1,1,1 
60 S=.1:A= 0:AT= INT(RND(1)1 0)+1:F= 0 
80 A=A+S 
95 LT= AT 
100 AT= AT + . 1* SQR(( 40/RT)T 3 ) 
110 GET A$:IF A$="H" AND 

R<95 THEN F=F+1:R=R+1:S=S' 
SQR(((R —1)/R)T3) 

120 IF A$="gg" AND R>8 THEN 
F= F +1:R = R —1:S = S'SQR(((R +1)/R) 
T 3 ) 

130 X= R'SIN(A):Y= R'COS(A) 
140 XT= RT'SIN(AT):YT= RT'COS(AT) 
150 PLOT 160 + X,100 —Y,1 
160 POKE 54276,17:POKE 64273, 

1 + R:FOR Z=1 TO 5:NEXT Z 
165 POKE 54276,0:POKE 54273,0 
170 PLOT 160 + XT,100 —YT,1 
175 PLOT 160 + RT*SIN(LT), 

100 — RT*COS(LT),0 
180 IF ABS(X — XT) > 3 OR ABS 

(Y —YT) > 3 THEN 80 
190 NRM:PRINT "QYOU USED";F;"BURNS" 

FIK 
10 GRAPHIC 2 
20 POKE 36878,15 
40 R =200:RT= INT(RND(1)`300)+ 50:IF 

ABS(R — RT) <100 THEN 40 
50 CHAR 9,9,"'" 
60 S=.1:A= 0:AT= INT(RND(1)10) +1: 

F=0 



80 A=A+S 
95 LT= AT 
100 AT= AT + .1*SQR ( (200/RT) T 3 ) 
110 GET A$:IF A$="11" AND R<480 

THENF=F+1:R=R +4:S =S*SQR 
(((R -4)/R)T 3 ) 

120 IF A$="g9" AND R>8 THENF= 
F +1:R =R —4:S = S"SQRWR +4)/ 
R + 4)/R)T 3) 

130 X= R*SIN(A):Y = R'COS(A) 
140 XT= RT*SIN(AT):YT = RT"COS(AT) 
150 POINT 1,490 +X,490 —Y 
160 POKE 36876,128 + (R/90):FOR Z=1 TO 

5:NEXT Z:POKE 36876,0 
170 POINT 1,490 + XT,490 —YT 
175 POINT 0,490 + RT*SIN(LT), 

490— RT*COS(LT) 
180 IF ABS(X —4) >20 OR 

ABS(Y—YT)> 20 THEN 80 
190 GRAPHIC 0:PRINT "YOU 

USED";F;"BURNS" 

II 
10 MODE1:VDU5 
20 VDU29,640;512; 
30 *FX4,1 
40 REPEAT:R = 200:RT= 50+ RND(350): 

UNTIL ABS(R — RT) >100 
50 MOVE —16,12:GCOL0,2:PRINT"*": 

GCOL0,3 
60 S= 0.1:A= 0:AT= RND(10):F= 0 
70 REPEAT 
80 A=A+S 
90 GCOL0,0:PLOT69,RT`SIN AT,RT`COS AT 
100 AT= AT+ 0.1'SQR((200/RT) A 3) 
110 IF INKEY( —58) AND R<500 THEN 

F=F+1:R=R+2:S=S*SQR 
(((R —2)/R) A 3) ELSE IF INKEY( —42) 
AND R>40 THEN 
F=F+1:R=R-2:S=S* 
SQR(((R +2)/R) A 3) ELSE FOR P=1 TO 
50:NEXT P 

120 GCOL0,3 
130 X = R'SIN A:Y = R'COS A 
140 XT= RT*SIN AT:YT= RT'COS AT 
150 GCOL0,3:PLOT69,X,Y 
160 SOUND 1, —5,R/2,1:GCOL 0,1 
170 GCOL0,1:PLOT69,XT,YT 
180 UNTIL ABS(X— XT) <20 AND 

ABS(Y — YT) <20 
190 GCOL0,3:VDU4:PRINTTAB(0,1)F; 

"El BURNS" 
200 GOTO 200 

MI [HI 
On the Tandy, change the 223s in Line 110 to 
247. 

10 PMODE4:PCLS:SCREEN1,1 
40 R=30:RT=10 + RND(70):IF 

ABS(R — RT) <20 THEN 40 

A simple game using trajectories 

The orbits of the four innermost planets 

50 DRAW"BM128,96S8NUNRNDL" 
60 S=.1:A= 0:AT= RND(10):F= 0 
80 A=A+S 
95 LT= AT 
100 AT= AT + .1'SQR((40/RT) A 3) 
110 IF PEEK(341) =223 AND R<95 THEN 

F = F +1:R = R +1:S= S"SQR 
(((R —1)/R) A 3) ELSE IF PEEK(342) 
=223 AND R>8 THEN 
F=F+1:R=R-1: 
S = S'SQR(((R +1)/R) A 3) ELSE 
FORK = 1T025:NEXT 

130 X= R'SIN(A):Y= R'COS(A) 
140 XT= RT*SIN(AT):YT= RT*COS(AT) 
150 PSET(128 + X,96 — Y,5) 
160 SOUNDIV3,1 
170 PSET(128 +XT,96—YT,5) 
175 PSET(128 + RT'SIN(LT),96 — RT' 

COS(LT),0) 
180 IF ABS(X—XT) > =4 OR 

ABS(Y—YT) > =4 THEN 80 
190 CLS:PRINT" ❑ YOU USED";F; "BURNS" 

Run the program to see the trail of an orbiting 
craft and a target satellite without a trail. Try 
to match the orbit of the craft with that of the 
satellite, using the up and down arrow keys (6 
and 7 on the Spectrum). Line 40 sets the 
radius R of the craft's orbit as 200 and the 
radius of the target as a random value. Line 60 
sets variables for the starting positions. 

The crux of the program lies at Line 100, 

which makes use of another important phys-
ical law: the square of the time to make one 
orbit, divided by the cube of the radius, is 
constant. This is the reason for the SQR and 
power of 3 in this line. 

To manoeuvre, use the up and down arrow 
keys to increase or decrease the size of the 
orbit. Remember that you go faster when the 
orbit is smaller. 

PLANETARY MOTION 
In reality, manoeuvring in and out of orbit is 
much harder than the last program suggests. 
It is easier to transfer from elliptical orbits, 
but the vastness of space makes it difficult to 
locate a target. Then there is the effect of 
gravity to complicate matters. The gravity of 
the Sun, Moon and planets all have an effect 
on the motion of a spacecraft. 

In practice, powerful computers are the 
tools of space navigators. They control the 
speed, time and direction of rocket burns to 
maintain a required path. 

Once in the correct path, a craft falls freely 
in the solar system's gravitational, field. It 
needs few course corrections during the 
months and years of travel—just as the 
planets lap the Sun predictably year after 
year. The next program lets you view the 
planets in motion: 

10 BORDER 4: CLS : LET gc = 0 
20 DIM d(9): DIM p(9): DIM i(9): DIM a(9): 

DIM b(9): DIM x(9): DIM y(9) 
30 FOR t = 1 TO 9: READ d(t),p(t): NEXT t 
40 INPUT "How many planets (1-9)",s 
50 IF s<1 OR s>9 THEN GOTO 40 
60 LET sc=d(s)/325: LET t= p(s)/75 
70 PRINT "There is a ❑ ";INT t;" CI day 

delay'""between each point": PRINT 
#1;"PRESS SPACE TO CONTINUE" 

75 IF 1NKEY$< > CHR$ 32 THEN GOTO 75 
80 CLS 
100 PRINT #1;"PRESS SPACE TO HAVE 

ANOTHER GO" 
110 LET n =1: LET m =1: LET g = PI/180 
120 FOR q=1 TO s 
130 LET r =d(q)/sc: LET a = r: LET b = r: LET 

e=0: LET p = p(q)/t 
140 IF q=1 THEN LET e= .2: LET b = a . .98 
150 IF q=8 THEN LET e = .26: LET b = a*.96 
160 LET i(q) = i(q) +360/P 
180 LET y= g'i(q): LET x = INT (a'(COS 

y—e)): LET y= INT (b'SIN y) 
200 IF gc < >0 THEN PLOT BRIGHT 

0;127 + x(q),87 + y(q) 
210 PLOT BRIGHT 1;127 +a(q)/4,87 

+ b(q)/4: LET x(q) = a(q)/4: LET 
y(q) = b(q)/ 4  

240 LET a(q) = x: LET b(q) =y: NEXT q 



250 LET m=m+t 
260 IF INKEY$=CHR$ 32 THEN RUN 
270 LET gc =1: GOTO 120 
280 DATA 58,88,108,225,150,365,228, 

687 
290 DATA 778,4333,1427,10759,2870, 

30685 
300 DATA 4497,60190,5969,90741 

10 PRINT "DM":NRM:COLOUR 0,1 
20 DIM D(8),P(8),I(8),A(8),B(8) 
30 FOR T=0 TO 8:READ D(T),P(T): 

NEXT T 
40 PRINT "DHOW MANY PLANETS 

(1-9)":INPUT S 
50 IF S<1 OR S>9 THEN 40 
60 S =S— 1:SC = D(S)/90:T= P(S)/75 
70 PRINT "WHERE A";INT(T); 

"DAY":PRINT "DELATekaVEEN EACH 
POINT" 

75 PRINT "MHIT SPACE TO CONTINUE" 
76 GET A$:IF A$ < > " El" THEN 76 
80 HIRES 1,0 
110 G=n/180 
120 FOR Q=0 TO S 
130 R=D(Q)/SC:A= R:B = R:E = 0: 

P= P(Q)/T 
140 IF Q=0 THEN E=.2:B=A'.98 
150 IF Q=8 THEN E=.26:B=A`.96 
155 IF S>3 AND Q<4 THEN 245 
160 II"P>3 THEN P = INT(P+ .5) 
170 1(Q) =1(Q) +360/P 
180 Y=G*1(Q):X-INT(A . (COS(Y)— E)): 

Y=INT(B'SIN(Y)) 
200 TEXT 157 + A(Q),97 — 	" ",O, 

1,1 
220 PLOT 160 + A(Q),100 — B(Q),1 
225 TEXT 157,97,"0",1,1,1 
230 TEXT 157 + X,97 — Y,"  g  ",1,1,1 
240 A(Q)=X:B(Q)=Y 
245 NEXT Q 
250 M=M+T 
260 GET A$:IF A$=" ❑ " THEN RUN 
270 GOTO 120 
280 DATA 58,88,108,225,150,365,228, 687 
290 DATA 778,4333,1427,10759,2870, 30685 
300 DATA 4497,60190,5969,90741 

ECK! 
10 GRAPHIC 0:PRINT "D":COLOUR 0,0,1,1 
20 DIM D(8),P(8),I(8),A(8),B(8) 
30 FOR T=0 TO 8:READ D(T),P(T):NEXT T 
40 PRINT "DHOW MANY PLANETS 

(1-9)":INPUT S 
50 IF S<1 OR S>9 THEN 40 
60 S = S —1:SC= D(S)/325:T= P(S)/75 
70 PRINT "DTHERE IS A";INT(T); 

"DAY":PRINT "DELAY BETWEEN 
EACH 1=1 ❑ 0111POINT" 

75 PRINT "ggHIT SPACE TO CONTINUE"  

76 GET A$:IF A$< >" D" THEN 76 
80 GRAPHIC 2 
90 CHAR 9,9,"4" 
110 G=n/180 
120 FOR Q=0 TO S 
130 R=D(Q)/SC:A=R:B= R:E= 0: 

P=P(Q)/T 
140 IF Q=0 THEN E=.2:B=A'.98 
150 IF Q=8 THEN E=.26:B=A*.96 
155 IF S>3 AND Q<4 THEN 245 
160 IF P>3 THEN P=INT(P+.5) 
170 1(Q) =I(Q) +360/P 
180 Y=G*1(Q):X= INT(A*(COS(Y) — E)): 

Y= INT(B*SIN(Y)) 
230 POINT 1,500 +X,500 —Y 
245 NEXT Q 
250 M=M+T 
260 GET A$:IF A$=" ❑ " THEN RUN 
270 GOTO 120 
280 DATA 58,88,108,225,150,365,228, 

687 
290 DATA 778,4333,1427,10759,2870, 

30685 
300 DATA 4497,60190,5969,90741 

10 MODE1 
20 DIM D(8),P%(8),I(8),A%(8),B%(8) 
30 FOR T=0 TO 8:READ 	,P%(T): 

NEXT 
40 INPUT TAB(0,1)"HOW MANY 	NETS 

(1-9) ❑ ",S% 
50 IF S%<1 OR S%>9 THEN CLS:GOTO 40 
60 S%= S% — 1:SC = D(S%)/325:T = P%(S%) 

/75 
70 PRINT"`THERE IS A ❑ ";INT 

T" ❑ DAY'DELAY BETWEEN EACH 
POINT"""PRESS SPACE TO 

"41.1111610  NTIN UE":R EP E AT UNTIL GET = 32 
80 MODEL 
90 VDU 29,640;512; 
100 PRINT TAB(3,31)"PRESS SP 	TO HAVE 

ANOTHER GO" 
110 N%=0:M 0:G PI/180:VDU5 
120 FOR Q=0 TO S% 
130 R = D(Q)/SC:A = R:B = R:E =0: 

P = P%(Q)/T 
140 IF 0=0 THEN E=0.2: 6=A'0.98 
150 IF Q=8 THEN E=0.26: B = A .0.98 
160 IF P>3 THEN P=INT(P+ 0.5) 
170 1(Q) =I(Q) + 360/P 
180 Y=G . 1(Q):X=INT(A*(COS(Y)—E)): 

Y= INT(13*SIN(Y)) 
190 GCOL0,0 
200 MOVE A%(Q)-12,B%(Q)+24:PRINT"." 
210 GCOL0,3 
220 PLOT 69,A%(Q),B%(Q) 
230 MOVE X —12,Y + 24:PRINT"." 
240 A%(Q) =X:B%(Q) =Y:NEXT 
250 M=M+T 
260 IF INKEY( —99) THEN RUN  

270 GOTO 120 
280 DATA 58,88,108,225,150,365,228, 

687 
290 DATA 778,4333,1427,10759,2870, 

30685 
300 DATA 4497,60190,5969,90741 

fl 
10 PMODE4:PCLS 
20 DIM D(8),P(8),I(8),A(8),B(8) 
30 FOR T=0 TO 8:READ D(T),P(T):NEXT 
40 CLS:INPUT"HOW MANY PLANETS 

(1-9) 0";S 
50 IF S<1 OR S>9 THEN 40 
60 S= S —1:SC= D(S)/90:T= P(S)/75 
70 PRINT:PRINT"THERE IS A";INT(T); 

"DAY":PRINT"DELAY BETWEEN EACH 
POINT":PRINT:PRINT:PRINT"PRESS 
SPACE TO CONTINUE" 

75 IF INKEY$< >" ❑ " THEN 75 
80 SCREEN1,1 
90 CIRCLE(128,96),1,5 
110 G=ATN(1)/45 
120 FORQ = 0 TO S 
130 R = D(Q)/SC:A= R:B = R:E =0: 

P=P(Q)/T 
140 IF Q=0 THEN E=.2:B=A'.98 
150 IF Q=8 THEN E=.26:B =A . .96 
155 IF S>5 AND Q<6 THEN 245 
160 IF P>3 THEN P=INT(P+.5) 
170 1(Q) =I(Q) +360/P 
180 Y=G*1(Q):X=INT(A*(COS(Y)—E)): 

Y = INT(B*SIN(Y)) 
200 CIRCLE(128+A(Q),96— B(Q)),1,0 
220 PSET (128 +A(Q),96 — B(Q),5) 
230 CIRCLE(128+X,96—Y),1,5 
240 A(Q)=X:B(Q)=Y 
245 NEXT 
250 M=M+T 
260 IF INKEY$=" ❑ " THEN RUN 
270 GOTO 120 
280 DATA 58,88,108,225,150,365,228, 

687 
290 DATA 778,4333,1427,10759,2870, 

30685 
300 DATA 4497,60190,5969,90741 

When you RUN this program, you are 
prompted to enter a value to select how many 
planets you wish to view. The larger the 
number (between 1 and 9), the more com-
plicated the picture. To find out which 
planets you are viewing, remember that Mer-
cury is nearest the Sun, then come Venus, 
Earth, Mars, Jupiter, Saturn, Uranus, Nep-
tune and Pluto. RUN the program with differ-
ent input values and notice that the orbits of 
two planets—Mercury and Pluto—are dist-
inctly elliptical orbits. In fact, they are all 
elliptical, only some have so little eccentricity 
that they approximate closely to circles. 



Guide the starving snake to the food 
in /NPUTs snake game. Gobbling 
nourishing numbers will make the 
baby snake grow into a huge serpent 
if you're skilful 

`Snake' is a classic arcade-type game, which is 
very simple to play, but nonetheless, surpris-
ingly addictive. Thankfully, there's no need 
to use machine code to write the game—the 
game has gone down in the history of home 
computing as one of the most satisfying that 
can be written in BASIC. 

PLAYING THE GAME 
The object of the game is to guide the hungry 
binary adder around the screen, gobbling up 
numbers which are plotted randomly. The 
numbers count down, so the longer you take 
with the snake, the lower your score will be. If 
you take too long, and the number decre-
ments to zero, it will disappear, and another 
number will appear elsewhere. Eating a num-
ber will increase the snake's length by that 
number of segments. 

Be careful not to overrun the border, nor 
allow the snake to cross over itself—
particularly difficult as the snake gets longer. 
Crossing the border or the snake's body will 
end the turn, OUT will be displayed across 
the whole screen. 

a 
10 BORDER 1: PAPER 7: INK 9: CLS 
20 LET hs= 0 
30 DIM s(570,2) 
100 LET s=0 
110 LET s(1,1) =10: LET s(1,2) = 14 
120 LET s(2,1) =11: LET s(2,2) =14 
130 LET s(3,1)= 12: LET s(3,2) =14 
135 GOSUB 1500 
140 LET t =1: LET h =3 
145 LET yv =1: LET xv= 0 
150 FOR n=1 TO 3: PRINT PAPER 4;AT 

s(n,1),s(n,2);"#": NEXT n 
160 LET y=12: LET x=14 
165 LET p= 0 
170 GOSUB 1000 
190 IF ATTR (y,x) < > 56 AND ATTR 

(y,x) < 128 THEN GOTO 2000 
200 LET h=h+1: IF h=501 THEN LET h=1 
210 PRINT PAPER 4;AT y,x;" #" 
220 LET s(h,1)=y: LET s(h,2)=x 
230 PRINT AT s(t,1),s(t,2);CHR$ 32 
240 LET t =t +1: IF t = 501 THEN LET t=1 
250 IF p=0 THEN LET p= INT (RND*9) +1: 

LET fy= INT (RND*19) +2: LET fx= INT 
(RND*30) +1: IF ATTR (fy,fx) < >56 
THEN LET p=0: GOTO 250 

260 PRINT PAPER INT (p/2); FLASH 1;AT 
fy,fx;p 

270 IF RND <.98 THEN GOTO 290 
280 LET p=p-1: IF p=0 THEN PRINT AT 

fy,fx;CHR$ 32 
290 IF y < > fy OR x< >fx THEN GOTO 170 
300 LET s=s+p: PRINT PAPER 4;AT 

Y,x;"#": PRINT PAPER 6;AT 0,6;s 
310 FOR n=1 TO p 
320 GOSUB 1000 
325 IF ATTR (y,x) < > 56 THEN GOTO 2000 
330 LET h = h +1: IF h = 501 THEN LET h=1 
340 LET s(h,1) = y: LET s(h,2) = x 
350 PRINT PAPER 4;AT s(h,1), 

s(h,2);" # " 
355 FOR m=1 TO 10: NEXT m 
360 NEXT n 
500 GOTO 165 
1000 LET a$=1NKEY$ 
1010 IF a$ = "q" THEN LET 

yv= —1: LET xv = 0 
1020 IF a$ = "a" THEN LET 

yv =1: LET xv = 0  

1030 IF a$="o" THEN LET xv= 
—1: LET yv = 0 

1040 IF a$ = "p" THEN LET 
xv =1: LET yv = 0 

1050 LET y=y+ yv: LET x= 
x + xv: RETURN 

1500 FOR n=22560 TO 22591: 
POKE n,16: POKE n+640,16: 
NEXT n 

1510 FOR n=22592 TO 22592+ 
32'19 STEP 32: POKE n,16: 
POKE n+31,16: NEXT n 	 • 

1520 PRINT PAPER 1;AT 0,0;" SCORED"; 
PAPER 6;s; PAPER 1;TAB 14;"HIGH SCORE 
❑ "; PAPER 6;hs;PAPER 1;TAB 31;" ❑ " 

1590 RETURN 
2000 PRINT AT 0,0;: FOR n=1 TO 88: PRINT 

FLASH 1; PAPER 2; INK 6;"OUT!"; PAPER 
6; INK 2;"OUT!";: BEEP 
.005,60—n: 

 

NEXT n 



A VERSION OF THE CLASSIC  
GAME WRITTEN IN BASIC  

PLOTTING FOOD  
EATING NUMBERS  

EXTENDING THE SNAKE  

2010 IF s> hs THEN LET hs=s 
2020 CLS : PRINT AT 8,10;"SCORE: ";s;AT 

11,8;"HIGH SCORE: ";hs 
2030 PRINT INVERSE 1;AT 16,2;"Press any key 

to play again" 
2040 PAUSE 0: CLS : GOTO 100 

Line 10 sets the border, paper and ink colours 
and clears the screen. The high score and 

score are set to zero by Lines 20 
and 100. 

Line 30 DIMensions array s, 
which will be used to store the 
screen coordinates of the snake. 
Initially, the snake will occupy 

(10,14), (11,14) and (12,14). Lines 110 to 130 
place the coordinates in the first three ele-
ments of the array. 

Line 135 calls the 'setting up the screen' 
subroutine, starting at Line 1500. The border 
is drawn by POKEing into the attribute file—
Line 1500 draws the lines at the top and 
bottom of the screen, and Line 1510 draws 
the borders at the sides. Line 1520 sets up the 
score and high score. 

Line 140 sets up the head and tail pointers 
to array s. They tell the machine that the tail 
coordinates are stored in the first pair of array 
elements, and the head coordinates are stored 
in the third pair of elements. As the snake 
moves, the two pointers are adjusted and the 
new head position is slotted into the array. 

The vectors xv yv, keep track of the direc-
tion the snake is heading. Both xv and yv can 
take three values: 0 means the snake isn't 
heading in that direction; 1 means the snake is 
heading down or right; and —1 means the 
snake is heading up or right. Line 145, then, 
makes the snake move up the screen at the 
start of the game. 

The snake, consisting of three hashes, is 
PR INTed by Line 150. The current head 
position is given by x and y and these are used 
to detect collisions. Line 160 has the head 
positioned at 14,12. Line 165 sets the value of 
the displayed number, p, to zero. 

The INKEY$ subroutine, starting 
at Line 1000, is called by Line 170. 
0 and A move the snake up and down, 

and 0 and P move it left and right. Pressing 
the keys change xv and yv, and Line 1050 



changes the head position by adding xv and yv 
to x and v. 

At the end of the subroutine, the program 
RETURNS to Line 190. Line 190 uses ATTR to 
check if the head is going to run into a square 
that isn't white (the background colour), or 
isn't flashing (a number). If both are true, 
the snake must have overrun the border, or 
crossed over itself, and the program jumps to 
Line 2000-the start of the 'end of game' 
routine. 

Provided that the next head position is 
legal, Line 200 increments the head pointer. 
If the pointer now has a value outside the 
DIMensions of the array, the pointer is reset to 
one. The head is PRINTed at its new position 
by Line 210, and Line 220 sees that the new 
position is put into array s, at the elements 
indicated by the head pointer. The tail needs 
to be blanked out or else the snake will get 
longer and longer-Line 230 sees to this by 
referring to the array for the position at the 
tail. Line 240 increments the tail pointer, and 
checks, again if the pointer is pointing outside 
the DIMensions of the array. 

If there isn't a number on screen, Line 250 
chooses a number, p, and a random position 
for it. If the position isn't on a white area of 
screen-ATTR(fy,fx) < > 56-p is reset to 
zero, and another number and position is 
chosen. With a suitable position chosen, Line 
260 PRINTS it flashing on the screen. 

As time elapses, the number on screen is 
decremented. A slight random element is 
introduced in Line 270, by comparing a 
random number with .98. In most cases, the 
score decrementing line-Line 280-is 
jumped over. Line 280 checks that the num-
ber is still greater than zero after it's been 
decremented-otherwise the number is 
blanked out. If the head isn't occupying the 
same screen position as the number, the loop 
is completed by the program being sent back 
to Line 170. 

The program reaches Line 300 if the snake 
has eaten the number. The score has the eaten 
number added to it. The head is PRINTed, and 
the score displayed. The FOR ... NEXT loop 
between Lines 310 and 360 adds the correct 
number of segments to the snake-the num-
ber of segments is determined by the value of 
the number the snake has eaten. Each time 
through the loop, Line 320 calls the INKEY$ 
routine; Line 325 checks if the head is still in a 
legal position; Line 330 increments the head 
pointer; Line 340 stores the head's new 
position in array s; and the head is PRINTed by 
Line 350. The extra segments are added by 
not blanking out the tail as it would be 
normally. Not blanking out the tail means 
that the snake would be seen to speed up if  

you didn't use the delay in Line 355. 
The final section of program-starting at 

Line 2000-as mentioned earlier, is the 'end 
of game' routine. Line 2000 PRINTS 'OUT' all 
over the screen, at the same time making a 
series of BEEPs. Line 2010 updates the high 
score if it has been exceeded, and Line 2020 
displays the score and high score. Lines 2030 
and 2040 allow the player to start again. 

10 P0KE53280,2:POKE53281,1:PRINT 

20 HS = 0 
30 DIM S(1000,2) 
40 P0KE54296,0 
100 S = 0 
110 S(1,1) =10:S(1,2)=14 
120 S(2,1) =11:S(2,2) =14 
130 S(3,1) =12:S(3,2) =14 
135 GOSU B1500 
140 T=1:H=3 
145 YV =1:XV= 0 
150 FORN =1T03:SP =1024 + S(N,1) .40 + 

S(N,2):POKESP,163:POKE54272 + SP, 
6:NEXT 

160 Y=12:X=14 
165 P = 0 
170 GOSUB 1000 
190 SP= PEEK (1024+Y*40+X):IFSP= 

1600RSP =1630RY= OTHEN2000 
200 H = H +1:1FH =1000THENH =1 
210 SP =1024 + Y*40 + X:POKESP,163: 

POKESP + 54272,6 
220 S(H,1) = Y:S(H,2) = X 
230 SP = S(T,1)*40 + S(T,2) +1024:POKE 

SP,32 
240 T=T+1:IFT=1000 THEN T=1 
245 IFP< >0 THEN260 
250 P= INT(RND(1)*9) +1:FY = INT(RND 

(1)•21) + 2:FX= INT(RND(1) .37) +1 
255 IFPEEK(1024 + FY•40 + FX) < > 32 

THEN250 
260 SP =1024 + FY*40 + FX:POKESP,P 

+ 48:POKESP + 54272,0 
270 IF RND(1)<.95THEN 290 
280 P= P-1:1FP=OTHENPOKE1024 + FX 

+ FY*40,32 
290 IFFY< >Y OR FX< >X THEN 170 
300 S = S + P:SP = 1024 + Y.40 + X:POKESP, 

163:POKESP + 54272,6:PRINT"l§ a 
HIJNINPJP.1"s 

310 FORN =1TOP 
320 GOSU B1000 
325 SP= PEEK (1024 +Y*40 + X):IFSP = 

1600RSP =163ORY= OTHEN2000 
330 H = H +1:1FH =1000THENH =1 
340 S(H,1) =Y:S(H,2) =X 
350 SP =1024+ S(H,1)•40+ S(H,2):POKE 

SP,163:POKESP + 54272,6 
355 FORM =1T010:NEXT 

360 NEXT N 
500 G0T0165 
1000 GET A$ 
1010 1FA$ = "Q"THENYV = -1:XV= 0 
1020 1FA$ ="A"THENYV=1:XV = 0 
1030 1FA$ = "0"THENXV = -1:YV= 0 
1040 1FA$ = "P"THENXV =1:YV = 0 
1050 Y = Y +YV:X = X+ XV:RETURN 
1500 FORN = 0T039:POKE1024 + N,160: 

POKE55296 + N,O:POKE1984 + N,160: 
P0KE56256 + N,O:NEXT 

1510 FORN = 1T023:POKE1024 + N•40,160: 
POKE1063 + N*40,160 

1515 P0KE55296 + N*40,0:POKE55335+ 
N'40,0:NEXT 

1520 PRINT1§1. 	SCORE"S;TAB(18) 
"g1HIGH SCORE ";HS 

1590 RETURN 
2000 FOR F = OT024:POKE54272 + F,0: 

NEXT 
2010 P0KE54273,8 
2020 P0KE54277,175:P0KE54278,30: 

P0KE54296,15:POKE54276,129 
2030 PRINT"I§1";TAB(18)"M aOUT!" 
2040 FORF = OT010:PRINT"l§"TAB(18) 

"OUT!":FORG = 0T090:NEXT:PR INT 
" ErTAB(18)" a OUT!" 

2050 FORG = 0T090:NEXTG,F:P0KE54277, 
0:P0KE54278,0 

2060 IFS> HSTHENHS = S 
2070 PRINT"Ogigggigang 

gg"TAB(15)"SCORE"S:PRINT 
"Ag grTAB(13)"HIGH SCORE"HS 

2080 PRINTTAB(6)" gig gg PR ESS ANY 
KEY TO PLAY AGAIN." 

2090 POKE198,0:WAIT198,1:PRINT 
"D":GOT0100 

The main program listing given above is for 
the Commodore 64, but if you have a Vic with 
3K RAM Expansion you can still play the 
game by changing the lines shown below, and 
not using Lines 2010 and 2020. The size of 
the playing area has had to be limited because 
of the limited memory size. 

10 POKE36879,26:PRINT"01" 
30 DIM S(308,2) 
40 P0KE36878,15 
135 POKE 36867,32:GOSUB1500 
140 T=1:H=3 
145 YV=1:XV = 0 
150 FORN =1T03:SP =7680 + S(N,1)•22 + S 

(N,2):POKESP,163:P0KE30720 + SP, 
6: N EXT 

190 SP= PEEK (7680+ Y*22 + X):IFSP =160 
ORSP =1630RY =OTHEN2000 

200 H = H +1:1FH =308THENH =1 
210 SP =7680+ Y*22 + X:POKESP,163:POKE 

SP + 30720,6 



230 SP = S(T,1)*22 + S(T,2) + 7680:POKE 
SP,32 

240 T=T+1:IFT=308 THEN T=1 
245 IFP< >0 THEN260 
250 P=INT(RND(1)*9)+1:FY=INT(RND(1) 

'13) + 2:FX =INT(RND(1)18)+1 
255 IFPEEK(7680+ FY*22+ FX) < > 32THEN 

250 
260 SP =7680+ FY*22+ FX:POKESP,P +48: 

POKESP +30720,0 
280 P=P-1:1FP=OTHENPOKE7680+ 

FX+ FY'22,32 
300 S=S+ P:SP = 7680+ Y*22 + X:POKESP, 

163:POKESP + 30720,6:PRINT" I§ a"S 
325 SP= PEEK (7680+ Y*22 + X):IFSP =160 

ORSP=163ORY=OTHEN2000 
330 H=H +1:IFH=308THENH =1 
350 SP= 7680+ S(H,1)*22 +S(H,2):POKE 

SP,163:POKESP + 30720,6 
1500 FORN = OT021:POKE7680 + N,160: 

P0KE38400+ NAPOKE8010 + N,160: 
P0KE38730+ N,0 

1510 POKE 7680+ N*22,160:POKE7701 
+ N*22,160 

1515 P0KE38400+ N*22,0:POKE38421 
+ N*22,0:NEXT 

1520 PRINT" IR ."S;TAB(10)HS 
2000 FOR Z=200T0127STEP-1:POKE 

36877,Z:NEXT 
2030 PRINT"I§Ag Ag";TAB(9) 

"InOUT!" 
2040 FORF=0T010:PRINT1E1Agg" 

TAB(9)"OUT!":FORG = 0T090:NEXT: 
PRINT"Iga gg "TAB(9)"a0UT!" 

2050 FORG =0T090:NEXTG,F 
2070 POKE 36867,174:PRINT"Ogiggg 

XII AIM 1.1 kl PI 
SCORE"S:PRINT"ggINIGH SCORE"HS 

2080 PRINT"l§aPRESS ANY KEY TO 
PLAYD" 

2090 PO KE198,0:WAIT198,1:PRI NT 
"0":GOT0100 

Line 10 sets up the screen colours and clears 
the screen ready for the game's graphics. The 
high score is set to zero in Line 20, and the 
score is set to zero by Line 100. 

Line 30 DI Mensions array S, which will be 
used to store the screen coordinates of the 
snake. The maximum length of the snake is 
1000 segments for the Commodore 64 and 
308 for the Vic, so a two-dimensional array, 
1000 by 2, or 308 by 2 elements is needed 
because x and y coordinates are needed to 
define each screen location. Initially, the 
snake will occupy (10,14), (11,14) and 
(12,14). Lines 110 to 130 place the coordi-
nates in the first three pairs of elements in the 
array. 

The 'setting up the screen' subroutine, 
starting at Line 1500, is called by Line 135. 
Line 1500 draws the borders at the top and 
bottom of the screen, and Lines 1510 and 
1515 draw the borders at the sides. The score 
and high score are set up by Line 1520. 

H and T in Line 140 are pointers to the 
array. H points to the pair of elements which 
hold the head's coordinates, and T does the 
same for the tail's coordinates. In the case of 
Line 140, the tail is stored in the first pair, 
and the head is stored in the third pair. 

Line 145 sets two vectors—xv and yv-
which keep track of which direction the snake 
is moving. Both can take one of three values-
0 means the snake isn't heading in that 
direction; 1 means that the snake is heading 
down or right; and —1 means the snake is 
heading up or right. Line 145, then, makes 
the snake move up at the start of the game. 

Line 150 POKEs the snake on to the screen. 
There's a FOR ... NEXT loop from one to 
three, which makes the snake start off consist-
ing of three segments. Line 160 uses two  

variables—X and Y—to keep track of the 
snake's head. The two variables are set to the 
position that the head has been POKEd into in 
Line 150. Line 165 contains a flag, P, which 
indicates if a number is being displayed. 

Line 170 calls the keyboard reading sub-
routine starting at Line 1000. Lines 1010 to 
1040 read the Q, A, 0 and P keys, and set the 
vectors appropriately. Line 1050 uses the 
vectors to calculate the position of the snake, 
and ends the subroutine. 

Line 190 checks if the snake has overrun 
the borders, or has crossed over itself. If it 
has, it jumps to the 'end of game' routine at 
Line 2000. If the snake's position is legal, 
Line 200 increments the head pointer, and 
moves it back to the beginning of the array if 
the end has been reached. The head is POKEd 
into its new position by Line 210, and Line 
220 enters the new position into the array. 
Line 230 blanks out the tail, so that the snake 
doesn't get longer and longer. Line 240 
increments the tail pointer, and checks that 
the pointer is still pointing to an element 
within the array. 

If a number is being displayed, Line 245 
sends the program to Line 260. If not, a new 
number will have to be displayed. Line 250 
chooses a number at random, and a position 
for it. Line 255 checks if the position chosen 
isn't clear space. If it isn't, the program goes 
back to Line 250 again. Line 260 POKES the 
number on to the screen. 

As time elapses, the number on the screen 
is decremented. A slight random element is 
introduced in Line 270, by comparing a 
random number with 0.95. In most cases, the 
score decrementing line—Line 280—is 
jumped over. Line 280 checks that the num-
ber is still greater than zero after it's been 
decremented—otherwise the number is 
blanked out. If the head isn't occupying the 
same screen position as the number, Line 290 
completes the loop, by sending the program 
back to Line 170. 

If the snake has eaten the number, the 
program reaches Line 

300. The score is 
increased . by the 

number that's just 
been eaten. The 

head is POKEd on 
screen, and the 

score displayed. 
The FOR ... NEXT 

loop between Line 310 
and 360 adds the 

correct number of 
segments to the snake— 

the number of segments is 
determined by the number that 



the snake has got its fangs round. Each time 
through the loop, Line 320 calls the keyboard 
reading routine; Line 325 checks if the head is 
still in a legal position; Line 330 increments 
the head pointer; Line 340 stores the head's 
new position in the array; and the head is 
POKEd by Line 350. The extra segments are 
added by not blanking out the tail. With less 
to do, the program would speed up the 
progress of the snake, but introducing the 
delay in Line 355 keeps the speed of the snake 
constant. 

The final section of the program, starting 
at Line 2000 is the 'end of game' routine. In 
the case of the Commodore 64, Line 2000 
makes the machine ready to generate a sound 
effect. Lines 2010 and 2020 generate the 
sound effect. In the case of the Vic 20, the 
sound effect is generated in Line 2000 alone. 
Don't forget to turn the sound on your TV 
up. Lines 2030 and 2040 flashes the word 
OUT! on the top border. There's a short 
pause in Line 2050 before the sound is turned 
off. Line 2060 updates the high score if 
necessary, and Line 2070 displays the score 
and high score. 
NOTE: If you have a BBC fitted with a disk 
drive unit, change to MODE 4 in I,ine 20. 

10 *FX11 
20 S%-= 0:MODE1 
30 VDU23;8202;0;0;0; 
40 DIM P(39*31) 
50 PROCSCREEN 
60 P(660)= — 40:P(620) = —40 
70 F 0:N = 0:V = 0:V2 = 0:SC = 0: HISC = 0 
80 X%= 20:Y%=15 
90 D= —40:H=580:T=660 
100 PRINTTAB(20,15)"*"TAB(0,1)"SCORE" 
110 PROCCOM:IF F=1 THEN 260 ELSE 110 
120 DEF PROCSCREEN 
130 CLS:COLOUR131 
140 FOR Q=0 TO 39:PRINTTAB(Q,2) 

" ❑ "TAB(Q,29)" 0":P(2`40 + Q) 
=1:P(29'40 +Q) =1:NEXT 

150 FOR Q=3 TO 28:PRINTTAB(0,Q) 
" El"TAB(39,Q)" ❑ ":P(0*40) =1: 
P(Q*40 + 39) = 1:NEXT 

160 COLOUR128:ENDPROC 
170 DEF PROCCOM 
180 TD= D:K = INKEY(1):D =40*(K = 80) 

— 40*(K = 76) + (K = 90) — (K = 88):IF 
D=0 THEN D=TD 

190 PRINTTAB(X%,Y%)"#":X%= 
(H + D) MOD 40:Y%= (H + D) DIV 40: 
PRINTTAB(X%,Y%)"*" 

200 P(H)=D:H=H + D 
210 IF P(H)>100 THEN V= P(H)— 

100:N = 0:GOTO 230 
220 IF ABS(P(H)) =40 OR ABS(P 

(H))=1 THEN F=1:ENDPROC 
230 PRINTTAB(T MOD 40,T DIV 40)" ❑ " 
240 IF V>0 THEN V=V-1:SC=SC+1 

ELSE TT = T:T = T + P(T):P(TT) = 0 
250 PRINTTAB(10,1);SC:PROCJ:ENDPROC 
260 CLS:FOR T=1 TO 500:PRINT 

"OUTD";:NEXT:CLS 
270 PRINTTAB(10,10)"SCORE ❑ ❑ ❑ 

0 0 ❑ =";SC 
280 IF S%<SC THEN S%= SC :PRINT 

TAB(7,5)"YES IT'S A HIGH SCORE" 
290 PRINTTAB(10,13)"HIGH 

SCORED =";S% 
300 PRINTTAB(0,28)"PRESS ANY KEY FOR 

ANOTHER ATTEMPT" 
310 *FX15,0 
320 G =GET:CLEAR:GOTO 20 
330 DEF PROCJ 
340 IF N=0 THEN 380 
350 IF V=0 AND RND(1)<.02 THEN 

V2 = V2 — 1:P(X + 40*Y) = V2 +100 

360 IF V2=0 THEN P(X+ Y*40) = 0: 
N = 0:PRINTTAB(X,Y)" ❑ " ELSE 
COLOUR131:COLOURO:PRINTTAB 
(X,Y);V2:COLOUR3:COLOUR128 

370 ENDPROC 
380 IF V< >0 THEN ENDPROC ELSE 

V2 = RND(9):X = RND(38):Y= RND(24)+ 3 
390 IF P(X+ 40.Y) = 0 AND X+ 40'Y 

< >H THEN COLOUR131:COLOURO: 
PRINTTAB(X,Y);V2:COLOUR3:COLOUR 
128:P(X + Y*40) =V2+100 ELSE 380 

400 N=1:ENDPROC 

At the start of the program, Line 20 sets S%, 
the high score variable, to zero. The game 
takes place on the MODE 1 screen—set up by 
Line 20—so there are 40 screen positions 
across the width, and 32 top to bottom. Line 
30 turns off the cursor, and Line 40 
DI Mensions the array P, which will be used to 
store the screen coordinates of the snake's 



head and tail. The array has to be 
DI Mensioned so that it can contain the max-
imum length of the snake, but because the 
array starts from element zero, the 
DIMensions are 39'31. 

Line 50 calls PROCSCREEN, which starts at 
Line 120. Line 130 clears the screen and 
defines its COLOUR—COLOUR 131 means the 
spaces PRINTed later will appear in white. 
Line 160 changes the COLOUR black. 

Line 60 sets the values of two elements in 
P. Setting array elements to — 40 means that 
the next segment of the snake—going towards 
the head—is one line above the segment. If 
the value is 40, the next segment is below, and 
similarly if the value is —1, the segment is to 
the left, and if it is 1, the next segment is to the 
right. The values stored in P are simply 
pointers to the next segment. In the case of 
Line 60, the snake is positioned centrally, and 
is moving up the screen initially. 

Line 70 sets a pair of flags, a pair of 
variables and the score to zero. F is the dying 
flag, and is set if the snake hits the wall or 
crosses over its body, N is set to one if there's a 
number on screen, and V and V2 are used to 
manipulate the number. 

In Line 80, X% and Y% are the coordinates 
of the snake's head. The direction the head is 
moving is the value of variable D, and the 
array elements corresponding to the snake's 
head and tail are the values of variables H and 
T. Line 100 PRINTS the head and SCORE. 

Line 110 calls PROCCOM, which starts at 
Line 170. Line 180 reads the keyboard. Z and 
X move the snake left and right, and P and L 
move it up and down. The value of D is 
derived from the keypresses by using Boolean 
logic. TD is simply a temporary store for the 
direction—Temporary Direction. 

Line 190 PRINTS a body segment over the 
head's last position as part of the animation of 
the snake. The remainder of the line works 
out where the head is now, and then PRINTs it 

its new position. Line 200 puts the head 

direction in the array at P( H), before adding D 
to the head pointer, so the program knows the 
head's new position. 

Line 210 looks at the array element corre-
sponding to the new head position. If the 
number stored in that element is greater than 
100, the corresponding screen position must 
contain a number—in other words, the snake 
must have eaten a number, and the score will 
need to be increased, and the snake's length 
increased also. The program handles these 
flashing numbers by storing that number, 
plus 100, in the array element corresponding 
to the screen position. To find out the value of 
the number that's been eaten, the program 
needs to subtract 100 from the stored 
number—the value of the number is V. The 
number flag, N, is reset to zero, and the 
program jumps to Line 230. 

If the snake hasn't eaten a number, Line 
220 looks to see if it has crossed over itself—it  

looks to see if the value in the array element is 
1, —1, 40 or —40. Using ABS—absolute-
saves having to examine all four values. If it 
has crossed over itself, the dying flag, F, is set 
to one, and the PROCedure ends. 

If the snake has successfully eaten a num-
ber, the program reaches Line 230. If the 
number's value is still greater than one, the 
tail is blanked out, the value of the number is 
decremented, and the score incremented. If 
the number's value has decreased to zero, the 
tail is moved on in the array. The score is 
PRINTed, and PROCJ is called in Line 250. 

PROCJ starts at Line 330 and ends at Line 
400. If no number is being displayed—
N = 0—Line 340 sends the program to Line 
380. If there is a number on screen, Line 350 
decides whether to decrement the number, 
and does so, if it needs to. If the number is 
zero, Line 360, enters zero in the correct place 
in the array and blanks out the number on 
screen. The number flag is reset to zero. The 
PROCedure ends at Line 370. 

The Lines from 380 to 400 deal with 
plotting a new number on screen, if there is no 
longer one being displayed—if N = 0. The 
start of Line 380 is an extra check on the value 
of V. Next, a random value for V2 is chosen, 
and random X and Y coordinates for plotting it 
on screen. Line 390 checks if zero is stored in 
the array at the coordinates chosen, and that 
the coordinates do not correspond to the 
position of the head. Provided that both the 
conditions are satisfied, the number is dis-
played on screen. If the conditions aren't 
satisfied, the program chooses another ran-
dom number, and a new position for it. The 
number flag is set to one in Line 400, and the 
PROCedure  ends. 

All that remains of the program now, is the 
routine from Line 260 to Line 320. The 
program reaches Line 260 if the snake 
overruns the border, or crosses its own body, 
and PRINTs OUT across the screen, then 
clears it. The score is displayed by Line 270, 
and the high score—S%—updated if necessary 
by Line 280. Finally, Lines 300 to 320 are an 
`another go?' routine. 

r_W !HI 
10 M = 512:DIM B(M) 
20 GOSUB 600 
30 GOTO 500 
100 K$ =IN KEY$:1FK$ = 'THEN 

K$ = L$ 
110 K = ASC(K$):NP= B(H) — 32*(K =10) 

+ 32"(K =94)— (K = 9)-1- (K =8) 
120 TE = PEEK(NP) 
130 IF TE = FG OR TE = HC OR TE= BC OR 

NP <1056 THEN POKE NP,HC:E =1 
140 LS = KS:RETURN 



200 R=RND(9):RX=RND(13)+1:RY= 
RND(29) + 1:RP = RX*32 + RY 

210 IF PEEK(1024 + RP) < > BG THEN 200 
220 R$ = R1GHT$(STR$(R),1):PRINT@ 

RP,R$;:P=1:RETURN 
250 R = R —1:1F R = 0 THEN PRINT@RP, 

CHR$(BG);:P = 0:RETURN ELSE PRINT 
@RP,RIGHTVSTRVR),1);:RETURN 

300 SC= SC + R:PRINT@26,SC;:P = 0 
310 SL=SL+1:POKE NP,BC 
320 H = H —1:IF H=0 THEN H=M 
330 B(H)=NP 
340 FOR J =1 TO R 
350 PLAY "L255CEF" 
360 GOSUB100:IF E = 1 THEN 800 
370 H=H-1:IF H=O THEN H=M 
380 B(H) = NP:POKE NP,BC 
390 NEXT 
400 POKE NP,HC:RETURN 
500 IF P = 0 THEN GOSUB200 ELSE IF 

RND(150) <SL THEN GOSUB250 
510 GOSUB100:IF E = 1 THEN800 
520 IF TE= R +112 THEN POKE B(H), 

BC:GOSUB300 
530 POKE B(H),BC:POKE B(T),BG 
540 H=H-1:IF H=O THEN H=M 
550 T=T-1:IF T=0 THEN T=M 
560 B(H) = NP:POKE NP,HC 
570 GOT0500 
600 BG =RND(7)+ 1:FG = RND(7) +1: 

L$ = CHR$(94):P = 0:SC = 0:SL =1: 
E = 0 

610 IF BG = FG THEN600 
620 CLS BG: BG = BG — 1:FG = FG —1 
630 BG =143+1613G 
640 FG =143 +16. FG 
650 FOR J =1024 TO 1055:PLAY 

"T255L25504AG":POKE J,FG: 
PO KEJ + 480,FG:NEXT:FORJ =1056 
TO 1472 STEP 32:PLAY"02DA": 
POKEJ,FG:POKE J + 31,FG:NEXT 

660 PRINT@3,"HIGH =";HS;:PRINT 
@15,"YOUR SCORE= 0 0111"; 

670 HC = ASC("") + 64:BC = ASC 
(" # ") + 64:T = 3:H =1 

680 B(1) = 1263:POKE B(1),HC 
690 B(2) =1295:POKE B(2),BC 
700 B(3) =1327:POKE B(3),BC 
710 RETURN 
800 CLS RND(8):PLAY"01ACDEFG 

ACDEFG":FORK =1T0408:PRINT 
"OUT 0 ";:NEXT:PLAY"04ABCDEFG 
03ABCDEFGO2ABCDEFG" 

810 IF HS < SC THEN HS = SC 
820 CLS:PRINT@73,"SCORE ❑❑ ❑ ="; 

SC:PRINT@230,"HIGH SCORED ="; 
HS 

830 A$ =1NKEY$:PRINT@450,"PRESS A KEY 
TO PLAY AGAIN" 

840 A$ =1NKEY$:IF A$ = "" THEN 840 ELSE 
20 

The Snake game takes place on the text 
screen, rather than the high resolution screen 
which you have been using for a large number 
of games in INPUT. The game doesn't 
suffer, though—the text screen has been 
chosen simply because it's the most logical 
way to write the game, with characters repres-
enting segments of the snake. 

In Line 10 the array B is DIMensioned so 
that it can accommodate the maximum size of 
the snake-512 character squares. Note that 
each element of the array doesn't correspond 
to a character square on the screen, but is just 
a box in which the coordinates of part of the 
snake can be stored. Line 20 jumps to Line 
600 which is the initialization subroutine. 

In Line 600 BG is the background colour 
and FG is the foreground (border) colour. L$ 
is part of the way that the program handles 
keyboard input. Setting L$ to CH R$(94) 
means that the snake always starts off moving 
up the screen unless a key has been pressed 
previously—but more about controlling the 
snake a little later. P = 0 tells the machine that 
no number is being displayed, SC = 0 means 
that the score is zero, SL =1 means that the 
skill level is one, and E = 0 tells the machine 
that the snake is still within the playing area, 
and isn't trying to cross over its own body. 
The three flags are used during the program 
so that various subroutines can be called at the 
correct times. 

Line 610 makes sure the foreground and 
background colours are different—two new 
colours are chosen if the original pair are 
identical. Line 620 uses CLS BG to colour the 
screen in the background colour. BG and FG 
have one subtracted from them ready for the 
calculations in Line 630 and 640. The calcul-
ations may look quite complex, but all they do 
is to convert the values of BG and FG into ones 
that can be POKEd on the screen, drawing the 
borders and blanking out the tail of the snake 
as it moves across the screen. Line 650 draws 
the border, and PLAYS a few notes as it does so. 
The score and high score panels are also 
drawn. 

In Line 670, HC is the head code, and BC 
the body code. H and T are pointers to the 
array, B, representing the head and tail of the 
snake. Lines 680 to 700 POKE a head and two 
body segments on to the screen, so that the 
snake consists of a head and two body 
segments at the start of each turn. 

The program RETURNs to Line 30, which 
jumps to the main loop of the program—from 
Line 500 to 570. Line 500 first checks if a 
number is being displayed by looking at the 
value of P, the number display flag. If P is 
zero, the subroutine starting at Line 200 is 
called. If there is a number on screen, a  

random number between 1 and 150 is gen-
erated and compared with the current skill 
level. If the number is lower than the skill 
level, the program jumps to the subroutine 
starting at Line 250. 

The two alternative subroutines work like 
this. The subroutine starting at Line 200 
plants a random number at a random position 
on screen. Line 200 chooses the number, R, 
between 1 and 9, and chooses an X and Y 
coordinate for positioning the number. RX 
and RY are used for calculating RP, the screen 
position. Before the number is plotted on 
screen, Line 210 checks that the position 
contains the background colour—i.e. it's not 
on the border, or the snake itself. Line 220 
PRINTs the number on screen and sets the 
number displayed flag. The second subrout-
ine, consisting of just one line—Line 250—
decrements the number on screen. If the 
number becomes zero when decremented, the 
screen position occupied by the number is 
PRINTed over in the background colour—the 
number is PRINTed out, in other words. If the 
number doesn't become zero, the new value is 
displayed in the same screen location as the 
earlier value. The subroutine RETURNs to 
Line 510. 

Line 510 calls yet another subroutine—
this time it's the one starting at Line 100 that 
has been used earlier in the program to read 
the keyboard. The IF ... THEN checks if the 
snake has run out of screen, or crossed over 
itself. If it has, the program jumps to Line 
800—the routine leading to the end of the 
game. 

Line 520 tests if a number has been 
successfully swallowed by adding 112 to R, 
and comparing the result with TE. You have to 
add 112 here because TE is derived from 
PEEKing the screen, and the value returned 
after PEEKing isn't the same as the number 
that is being displayed. If a number has been 
swallowed, it's blanked out using the body 
code, then the subroutine at Line 300 is 
called. The score is increased, and another 
number is plotted on screen. 

Lines 540 and 550 change the head and tail 
pointers, and adjust them if they have 
dropped to zero. Line 560 POKEs the snake's 
head on to the screen. 

Sitting at the end of the program, starting 
at Line 800, is the 'game ends' routine. Line 
800 clears the screen to a randomly chosen 
colour. A short tune is PLAYed before the FOR 
... NEXT loop fills the screen with the word 
OUT. There's another short tune after the X 
loop. The high score is updated if necessary 
by Line 810, before the 'another go?' routine 
in Lines 820 to 840. Opting for another go 
will send the program back to Line 20. 



ENLARGING ROM CHARACTERS  
DOUBLE HEIGHT AND  

DOUBLE WIDTH  
DESIGNING YOU OWN  

BLOCK LETTERS  

If you want to set up a striking title 
page or other prominent display 
you'll need to create a special 
typeface. Here are two methods you 
can try 

The computer's normal on-board character 
set leaves a lot to be desired. After all, it was 
designed for economy of space. So if you want 
something that looks more like the headline 
than the small print, you need to set up a 
special typeface. 

There are several ways in which you can 
call on the computer's standard graphics 
facilities to enable you to create custom 
display letters. And each of these can be used 
for different types of effect. For example, you 
could DRAW the letters out line by line, or 
perhaps build them up from block graphics. 

Of course, you can use any of these 
methods within a program—so that the first 
20 lines might set up 'INPUT PRESENTS', 
for example—but this is generally an un-
economic way of doing things, not to mention 
difficult to work out. 

A far better way, particularly if you are 
going to want display letters quite frequently, 
is to set up a separate program to generate 
them. Once this has been done, you can 
simply enter the text you want to use, and let 
the computer plot the letters automatically. 
Then all you have to do is to SAVE the display 
out of the letter generator and into the 
program in which you want to use them. 

This article is the first of two which explain 
the various ways to do this, and give listings 
for the programs you need. In this part you 
will see two elegant solutions to the problem. 
The first program simply scans the character 
set in the computer's memory, and enlarges it 
to a display size. You get a typeface which is 
similar to the normal characters, but much 
more prominent. And you pick your letters 
simply by typing them in, in the normal way. 
Unfortunately, this method is not possible on 
the Dragon and Tandy as you cannot get 
access to the ROM character set. The second 
program builds up giant size characters from 
block graphics and works on all the 
computers. 



In the next article you will see how to 
create yet another style of lettering which can 
be adapted for all sorts of applications. You 
will also find out how you can use your 
display to brighten up another program. 

USING THE PROGRAMS 
When you RUN the program, the computer 
waits for you to INPUT a string. The Spectrum 
and Commodores wait for you to enter a piece 
of text, and then they PRINT it out on the 
screen in double height letters. 

The Acorn program first expects you to 
INPUT either H, for double height letters, or 
W, for double width letters, or both, for 
double height and double width letters. It 
then lets you enter a length of text, which it 
PRINTs on the screen in the form you choose. 

For all of the computers, it is probably a 
good idea to enter a short word to start with, 
so.  that you can see the effect. The reason for 
this is that if you enter too long a string, the 
words will be split over the ends of the line. 

Each of the programs actually looks at the 
bytes stored in the computer's ROM, and 
then uses these to define UDGs in various 
forms to make up each large letter. For 
example, with the double height letters, the 
computer replaces every byte from the ROM 
character set with two bytes in one of the 
UDGs. 

1000 INPUT "ENTER ANY LENGTH TEXT", 
LINE 1$: CLS : GOSUB 9000: GOTO 1000 

9000 LET line = 0: LET col = —1 
9010 LET y=0 
9020 FOR i =1 TO LEN 1$: LET col = col +1: 

IF col =32 THEN LET col =0: LET 
line= line+ 2 

9030 LET t$ = l$(i) 
9050 FOR x=0 TO 6 STEP 2 
9060 POKE USR "a" + x,PEEK (15616+ 

(8*(CODE 4 — 32)) + y) 
9070 POKE USR "a"+1 + x,PEEK 

(15616 + (8*(CODE 4 —32)) + y) 
9080 LET y = y +1 
9090 NEXT x 
9100 FOR x=1 TO 7 STEP 2 
9110 POKE USR "b"+x-1,PEEK 

(15616+ (8*(CODE 4 — 32)) +y) 
9120 POKE USR "b"+x,PEEK 

(15616+ (8*(CODE t$ — 32)) +y) 
9130 LET y=y+1 
9140 NEXT x 
9150 LET y = 0 
9160 PRINT AT line,col;CHR$ 144;AT 

line + 1,col;CHR$ 145 
9180 NEXT i 
9200 RETURN 

The first line in the program lets you enter 
your text, and puts it into the string variables 
1$. Then the computer sets up two variables 
for the position on the screen at which the 
computer will PRINT your text. They start off 
at 0, for the vertical coordinate, and —1 for 
the horizontal one (in a moment, you will see 
why it is set to —1). Then a third variable, y, 
is set equal to 0, before the computer actually 
starts to enlarge your text. 

Line 9020 starts a FOR ... NEXT loop equal 
to the number of characters you have entered, 
and then increases the column position (the 
variable col) by 1. This is why it was set to —1 
to start with, since to make the first letter start 
flush with the left hand side of the screen, (at 
column 0), the variable has to become 0. 

If the column variable is 32 (one more than 
the last position on each line) it is reset to 0, so 
that the computer PRINTs any more letters at 
the start of a new line. The LINE variable is 
also increased, by two, to move the position 
down so that new letters are PR INTed under-
neath the old ones. 

Line 9030 sets up a string variable, t$, 
equal to the letter which the computer is 
about to stretch. It does this by using the 
control variable of the FOR ... NEXT loop (i) 
and setting t$ as equal to the i'th character in 
the string you entered. 

Then the computer starts another FOR ... 
NEXT loop, which POKEs two bytes into a 
UDG, four times. 

The calculation involved in finding out 
what the computer POKEs into the UDG is the 
key to expanding the letters. 

ENLARGING THE LETTERS 
The first half is simple. It POKEs an address x 
places after the first byte of UDG a. The 
variable x is the control variable of the new 
FOR ... NEXT loop, and increases in STEPs of 
two, so that the second byte which the loop 
POKEs in is not changed when the computer 
RUNS through the loop again. 

The second half, which works out what is 
to be POKEd in, PEEKs the relevant byte in the 
current character from the ROM character 
set. 15616 is where the computer's own ROM 
characters start in memory. The calculation 
then takes away 32 from the CODE number of 
the character being stretched and multiplies it 
by 8, to find how far into the character set the 
letter being expanded is. 

It is necessary to take 32 away from the 
CODE number before multiplying it by 8 
because of the way that the Spectrum stores 
its characters (in fact, the first 32 character 
codes do not have 8 bytes reserved for them in 
this part of memory). 



When the computer has worked out how 
far the character is into the character set, it 
adds this number to the first address of the 
ROM character set, 15616, and then adds y to 
it. y is the variable which is set to 0 at the 
beginning of the program. And it will be used 
to tell the computer which byte within the 
current character is being PEEKed, and POKEd. 
Adding 0 as here, just means that it PEEKs the 
first byte of the current character. 

In Lines 9060 and 9070, the computer 
POKEs two addresses in the UDG area with the 
contents of just one address in the ROM 
character set: thus doubling the height of each 
letter. After it has done the first two POKEs, it 
increases y by one so it moves on to the next 
byte, and then repeats this routine until the 
FOR ... NEXT loop has finished—at which 
point all eight bytes have been POKEd. 

Then the Spectrum starts another FOR ... 
NEXT loop which does the same, but this time 
for the second UDG ("b") instead of UDG 
"a". This loop ends in Line 9140, and the 
computer resets y to 0. 

Line 9160 actually PRINTS the UDGs, one 
above the other. It uses the variables line and 
col to tell it the position at which it should 
PRINT the characters. The program does not 
PRINT "A", but uses CHR$ 144 instead, as 
otherwise, you would not be able to distingu- 

ish between a normal A and a graphics A. 
Finally, in Line 9180, the computer fin-

ishes the main FOR ... NEXT loop, and goes 
back to expand the next letter in your string. 
If it has already expanded, and PRINTed, all 
the letters you typed in, the computer goes 
back to Line 1000 to let you enter another 
string. 

1 PRINT"PLEASE WAIT—LOADING 
GRAPHICS..." 

100 POKE56334,PEEK(56334)AN D254 
110 POKE1,PEEK(1)AND251 
116 K= —1 
117 FORT= 0T0511:POKE12288 + T, 

PEEK(53248 + T):NEXT 
118 FORI = 512T02047:POKE12288 + 1,0: 

N EXT 
130 FORC = 0T052STEP2 
135 K=K+1 
140 FORT =16TOOSTEP — 2 
160 P0KE12288 + ((C + 64)*8) +T, 

PEEK(53248 + K*8 + (1/2)) 
170 P0KE12288 + ((C + 64)*8) + T —1, 

PEEK(53248 + K*8 + (T/2)) 
180 NEXT:NEXT 
185 FORT =1T026 
186 POKE12831 + X,0:X = X + 16:NEXT 
190 POKELPEEK(1)0R4 

200 P0KE56334,PEEK(56334)0R1 
250 PRINT" ": FORT = 55456T055536: 

POKET,1:NEXT 
300 P0KE53272,29 
310 PRINT"gigggagignggggggg 

INPUT A NAME MAX.40 CHARS." 
320 C = 0:X = 0:1 N PUTA$ 
330 IFLEN(A$) > 40TH EN250 
340 FORT= 1T02 
350 FORY = 1TO LEN (A$):B$ = M I D$ 

(A$,Y,1):B = ASC(B$) 
355 B = B — 64 
360 1FB$="1=1"THENPOKE1184 + X, 

32:X =X + 1:NEXT 
370 POKE1184 + X,64 + (B*2 — C):X = X + 1 
380 NEXT 
390 X = 40:C = —1:NEXT 
400 G ETA$: I FA$ = ""TH EN400 
410 G010250 

The Commodore and Vic programs work 
slightly differently from those for the Acorn 
and Spectrum, since the Commodore com-
puters do not have any 'ready to use' UDGs. 
So, the Commodore programs begin by copy-
ing the ROM character set into RAM, where 
the computer can alter them. This is done by 
Lines 100 to 200. If you are not quite sure as 
to what each POKE does, you should read the 
article on pages 450 to 457. 



The character set in RAM is changed so 
that some of the characters can be used for 
double height characters. The Lines 130 to 
180 use two FOR ... NEXT loops to double 
each letter in the alphabet, and store the two 
characters for each double height letter in the 
character set in RAM. 

The computer actually doubles the height 
by PEE King the bytes of the normal character, 
and POKEing each into a new character twice. 

When the computer gets to Line 300 it 
changes the character set pointer to point to 
the new set in RAM, and then lets you INPUT 
a string, which it will PRINT in double height 
characters. It also sets two variables, X and C, 
equal to 0. These two variables are used in the 
next few lines to make the computer look at 
the right place in memory for the double 
height characters. 

Line 330 checks that your string is 40 
characters or less. If it is over this length it 
goes back to Line 310. 

READING THE LETTERS 
The loop FOR T =1 TO 2, in Line 340, is so 
that the computer runs through every letter in 
your string twice, once for each half of the 
letter. The loop in the next Line makes the 
computer execute the next few lines once for 
every letter in your string. 

Then, B$ is set equal to the next letter in 
your string, using the function MID$. B is set 
equal to the ASCII code of the character in 
B$, and then the computer subtracts 64 from 
B so that it can be used in Line 370 to 
determine which letter is PR INTed. Line 360 
checks to see whether the current character in 
B$ is a space. If it is, the computer POKEs a 
space onto the screen, and does a N EXT to start 
on the next letter. 

So the computer only reaches Line 370 if 
B$ does not contain a space. This line also 
POKEs a character onto the screen—if the 
computer is PR INTing the top half, then Line 
370 directs it to the top half of whichever 
character is in B$, and if it is working on the 
bottom half, Line 370 points to the bottom 
half of the character in B$. 

It is in this Line that the variables X and C 
are used. X is added onto the location on the 
screen to be POKEd—so it is really changing 
the PRINT position. C is used to switch 
between the different character sets (for the 
upper and lower halves of the double height 
alphabet). 

After POKEing the character onto the screen 
in Line 370, the computer does a NEXT to go 
on to the next letter. When it has finished all 
the letters in your string, it goes to Line 390, 
where X is set to 40 (to bring the PRINT 
position to the start of the next Line) and C is 

Double height letters are ideal for a title 
page of a game or program 

set to —1. The NEXT in Line 390 refers to the 
FOR ... NEXT loop with T as its control 
variable. All this did was make the computer 
PRINT two lines of characters, for the two 
halves of the double height characters. 

Line 400 waits for you to press a key before 
letting the computer go to Line 410, which 
sends the computer back to Line 250 to 
prepare for another INPUT from you. 

ECK'  
10 POKE 51,255:POKE 52,19:POKE 

55,255: POKE 56,19:C LR 
20 FOR Z = 0 TO 1240:POKE 5120+ 

Z`2,PEEK(32768 + Z):POKE 5121 + 
Z`2,PEEK(32768 + Z):NEXT Z 

30 A$="":PR1NT "DENIER STRING": 
INPUT A$:IF A$ = "" THEN 30 

40 POKE 36869,253:POKE 36867,255 
50 PRINT "0";A$ 
60 GET Z$:1F Z$ = "" THEN 60 
70 POKE 36869,240:POKE 36867,174: 

GOTO 30 

It is very easy to double the height of the 
character set on the Vic 20. 

The Vic program above sets up the double 
height letters in Lines 10 and 20 with a series 
of POKE commands. Because this is a standard 
feature on the Vic, the computer can just 
PRINT the string—unlike the other com-
puters' programs, it does not have to split up 
the string and PRINT one letter at a time. 

For this reason, the rest of the program is 
quite simple: Line 30 lets you enter a string, 
Line 40 calls the double height characters, 
Line 50 clears the screen and PRINTS your 
string, Line 60 stops the computer until you 
press a key, and Line 70 restores the normal 
character set, then sends the computer back to 
Line 30 to let you enter another string. 

10 LL=40:MODE1 
20 PRINT':INPUT"DOUBLE (H)EIGHT AND/OR 

DOUBLE (W)IDTH",A$ 

30 CLS 
40 W = INSTR(A$,"W"):H = INSTR(A$,"H") 
50 INPUT"ENTER YOUR WORDS NOW",A$ 
60 FOR Q=1 TO LENA$ 
70 C =ASC(M1DCA$,Q,1))— 32:IF C<0 OR 

C>95 THEN 170 
80 PROCSET 
90 IF W < > 0 THEN PROCDW 
100 IF H < > 0 THEN PROCDH 
110 IF W=0 THEN 150 
120 VDU 224,226 
130 IF H < > 0 THEN VDU10,8,8,225, 

227,11 
140 GOTO 170 
150 VDU 224 
160 IF H < > 0 THEN VDU10,8,225,11 
170 IF H< >0 AND Q MOD (LL/2— 

LL/2*(W= 0)) = 0 THEN PRINT 
180 NEXT 
190 GOTO 20 
200 DEF PROCSET 
210 FOR T=0 TO 7 
220 ?(T + &C24) = ?(T+ C*8 + &C000) 
230 ?(T + &COO) = ?(T + C'8+ &C000) 
240 NEXT:ENDPROC 
250 DEF PROCDH 
260 FOR T=7 TO 0 STEP-1 
270 IF W< >0 THEN X = &COO ELSE 

X = &C24:GOTO 300 
280 ?(T*2 + &C10) = ?(T + X + 16) 
290 ?(T'2 + &C11) = ?(T + X + 16) 
300 ?(T'2+ &C00) = ?(T + X) 
310 ?(T'2+ &C01) = ?(T + X) 
320 NEXT:ENDPROC 
330 DEF PROCDW 
340 FOR P = 0 TO 7 
350 ?(P+ &COO) =0:?(P + &C10) = 0 
360 FOR T=7 TO 0 STEP —1 
370 ?(P+ &COO —16`(T <4)) = (?(P + 

&COO —16*(T <4)))'4 
380 ?(P + &COO —16*(T <4)) =?(P + 

&COO —16 . (T < 4)) — 3 . ((?(P + &C24) 
AND 2 A T)< >0) 

390 NEXT:NEXT:ENDPROC 

Lines 10 to 20 set up the computer by putting 
it into MODE 1, letting you choose between 
double height letters, double width letters, or 
double height and width letters, and then 
clearing the screen. 

Line 40 checks the string you have just 
entered to see whether or not it contains either 
of the width or height instructions W, or H, or 
both. If it does, the relevant variable, or 
variables, are altered. 

Then the computer lets you enter your 
text, which is then stored in A$. The main 
loop of the program starts at Line 60. By 
setting this as FOR Q =1 TO LENA$, the 
computer executes the loop once for every 
letter in the string you entered. 



Using the function ASC, and the string 
function MID$, Line 70 sets a variable, C, 
equal to the character number of the current 
letter in the string. The IF THEN condition 
in this line also checks to see whether the 
character is valid (between ASCII codes 32 
and 127), and if not, the computer jumps to 
Line 170. 

Then, in Line 80, the computer calls 
PROCSET. This PROCedure uses the ? com-
mand both to POKE and to PEEK. Where the 
sign ? appears before an = sign, it is used to 
POKE a value into memory. The value it POKEs 
in is found by PEEKing the number in the 
second part of the line, in which the ? sign 
stands for PEEK. This method is used 
throughout the program. 

Lines 210 to 240 use a FOR . . . NEXT loop to 
POKE the eight bytes of the current character 
into two UDGs. Then the PROCedure ends, 
and the computer returns to Line 90. There, 
the computer checks to see whether you want 
double width characters. If you do, it calls 
PROCDW at Line 330. 

DOUBLING UP 
This PROCedure splits each byte up into bits, 
and fill up two UDGs, one byte at a time. As it 
takes each bit, this is doubled and put into two 
bits of the UDGs. So 1 gives 11 and 0 gives 
00. So each bit of the original character is 
used twice. Once the computer has done this 
eight times, it has two UDGs, which, when 
put side by side, form the double-width 
version of the current character. For example, 
the byte (in binary) 11001100 would be 
changed to the two bytes 11110000 and 
11110000. 

If you select double height, the computer 
calls PROCDH. The second Line of this 
routine at Line 270 checks to see whether you 
have already expanded the width of the 
character—of course, if you have, the com-
puter has to double the height of two UDGs, 
not just one. If you do not want double width 
as well as double height characters, the com-
puter jumps to Line 300, missing out two 
lines which each set up a UDG. 

The Lines 280 to 310 each set up a UDG 
equal to eight bytes. Each line POKEs two 
bytes from memory into the UDG for every 
one byte of the original character. This is 
similar to the routine in PROCDW except, 
instead of doubling each character in width, it 
doubles the height. 

The computer then returns from this 
PROCedure, and starts the printing routine. 
This starts off by finding out whether the 
computer has to PRINT two characters across 
for every letter (which happens when you 
have double width characters). 

Lines 120 to 140 are the ones which PRINT 
the letters in double width. The first line 
PRINTS two UDGs using a VDU statement. 
Then, if you choose double height as well as 
double width, the computer PRINTs two more 
UDGs, underneath the two it has just 
PR 1 NTed. 

The routine starting at Line 150 puts a 
UDG on the screen, and, if H doesn't equal 0 
(in other words, if you do want double 
height), puts another directly underneath it. 

Line 170 PRINTS a blank line if 'double 
height mode' is being used, to make the text 
easier to read. But it also checks to see 
whether it is at the end of a line, otherwise 
each letter would be separated by a line space. 

The NEXT in Line 180 ends the main loop, 
sending the computer back to run through it 
again if there are more letters in the string, or 
letting it continue to Line 190 if there are not. 

BLOCK GRAPHIC LETTERS 
As well as just expanding your computer's 
standard characters, you can also create your 
own designs. This is especially useful on the 
Dragon and Tandy which do not give you 
access to the ROM, so you have to design your 
own. Here is a program which uses the block 
graphics on your computer to build up into 
large letters. 

10 DATA crinu,,,„19n ❑ ,, 

20 DATA "111 ❑ u","E 0 „,„ IE  
30 DATA " rnu,, , ,,u E ,, ,  

,,E 0 ,, , ,, u ET " 

40 DATA "11 E",-1616 ❑ -, 

"116171","liGil" 
50 DATA " r!! ", ,,r  

"rnr","uou" 
60 DATA "11661)","11111111", 

"ED III"3"L6U" 
70 DATA "ED E","rili", 

"utii","EDE" 
80 DATA "E616]","1101=1", 

90 DATA "nrn","ETm", 
"IllEiO""11:1111111" 

100 DATA "111U111","11110", 

110 DATA "CIE 07030", 
"r❑1 0 ","1:1EI El" 

120 DATA "pli1","161111", 
"111111","1■1611" 

130 DATA "Lotin-EDur, 
"rnu","rn" 

140 DATA "uuu","ru", 
01111""11] ❑ IT 

150 DATA "uou","umi", 
160 DATA "uou","uou", 

"L61E71:10 Li" 
170 DATA " 

180 DATA "IjOU","1111111", 

190 DATA " 111111"," r 1 1", 
"El El 11","11110" 

200 DATA "Eju","Enu", 
"Ii1611:1701110" 

210 DATA "11011111","111011", 
"U E U""U ❑ IT 

220 DATA "Eor","u11111", 
"11 11710 El" 

230 DATA "1111011","11 DU", 
"EFE","Nirl" 

240 DATA "Lpu","Iilo", 

How the blocks are defined on the Acorn computers 



250 DATA "U 	 U" 
260 DATA "E 61110","111 
270 DATA "E 11 E","1,!:1111" 
280 DATA " 	 610" 
290 POKE 23658,8: DIM a$(27,3): DIM 

b$(27,3): DIM c$(27,3): DIM d$(27,3) 
300 FOR j=0 TO 21 STEP 4 
310 FOR i=1 TO 4: READ a$(i + j): 

NEXT i 
320 FOR i=1 TO 4: READ b$(i+j): 

NEXT i 
330 FOR i=1 TO 4: READ c$(i+j): 

NEXT i 
340 FOR i=1 TO 4: READ d$(i+j): 

NEXT i 
350 NEXT j 
360 FOR i = 25 TO 26: READ a$(i): 

NEXT i 
370 FOR i=25 TO 26: READ b$(i): 

NEXT i 
380 FOR i=25 TO 26: READ c$(i): 

NEXT i 
390 FOR i = 25 TO 26: READ d$(i): 

NEXT i  

400 INPUT "ENTER up to 10 letters", LINE t$: 
IF LEN t$>10 THEN LET t$=t$ (TO 10) 

405 IF LEN T$ =0 THEN GOTO 400 
410 LET s$=`"': FOR i=1 TO LEN t$: IF 

CODE t$(i) <65 OR CODE t$(i) >90 THEN 
LET t$(i)=CHR$ 91 

420 LET s$=s$+a$(CODE t$(i) — 64): 
NEXT i 

430 PRINT s$ 
440 LET s$="": FOR i=1 TO LEN t$ 
450 LET s$=s$+b$(CODE t$(i) —64):NEXT i 
460 PRINT s$ 
470 LET s$="": FOR i =1 TO LEN t$ 
480 LET s$=s$+c$(CODE t$(i) —64): 

NEXT i 
490 PRINT s$ 
500 LET s$ ="": FOR i =1 TO LEN t$ 
510 LET s$=s$+d$(CODE t$(i) —64):NEXT i 
520 PRINT s$ 
530 PRINT : GOTO 400 

For the Vic, change the 9s in Line 170 to 5s. 

100 DIMA(78),B(78),C(78),D(78) 

120 FOR 1=1T078:READA(I):NEXT 
130 FOR 1=1T078:READB(I):NEXT 
140 FOR 1=1T078:READC(I):NEXT 
150 FOR 1=1T078:READD(I):NEXT 
170 T$=`"':PRINT"g] AgENTER UP 

TO 9 LETTERS":1NPUTTVFLEN(T$) 
>9THEN170 

180 IFLEN(T$)=OTHEN170 
185 FORX=1T04 
190 FORY=1TOLEN(T$) 
200 A$=MIDS(T$,Y,1) 
210 A= ASC(A$):A = A — 64 
220 B = (A —1)*3 
225 ONXGOT0230,240,250,260 
226 GOT0170 
230 FORR=B+1TOB+3:PRINTCHR$ 

(A(R));:N EXT: PRINT" ❑ ";:NEXT: 
PRINT:NEXT 

240 FORR=B+1TOB+3:PRINTCHR$ 
(B(R));:NEXT:PRINT" ❑ ";:NEXT: 
PRINT:NEXT 

250 FORR=B+1TOB+3:PRINTCHR$ 
(C(R));:NEXT:PRINT" ❑ ";:NEXT: 
PRINT:NEXT 

260 FORR=B+1TOB+3:PRINTCHR$ 



(D(R));:NEXT:PRINT"0";:NEXT: 
PRINT:NEXT:GOT0170 

2000 DATA 111,183,112,111,183,109, 
111,183,112,111,183,109 

2010 DATA 111,183,183,111,183,183, 
111,183,112,180,32,170 

2020 DATA 112,183,32,32,112,183,170, 
32,110,180,32,32 

2030 DATA 108,32,186,108,32,170,111, 
183,112,111,183,112 

2040 DATA 111,183,112,111,183,112, 
111,183,112,183,111,32 

2050 DATA 180,32,170,180,32,170,180, 
32,170,180,170,32 

2060 DATA 180,32,170,183,183,180 
2065 DATA 180,32,170,180,32,170,180, 

32,32,180,32,170 
2070 DATA 108,175,32,108,175,32,180, 

32,32,180,32,170 
2080 DATA 170,32,32,32,170,32,170, 

110,32,180,32,32 
2090 DATA 180,184,170,180,109,170, 

180,32,170,108,175,186 
2100 DATA 180,32,170,108,175,186, 

180,32,34,180,32  

2110 DATA 180,32,170,180,32,170,180, 
32,170,109,110,32 

2120 DATA 109,175,110,32,110,32 
2130 DATA 111,183,112,111,183,112, 

180,32,32,180,32,170 
2140 DATA 180,32,32,180,32,32,180, 

32,112,111,183,112 
2150 DATA 170,32,32,32,170,32,170, 

109,32,180,32,32 
2160 DATA 180,32,170,180,32,112,180, 

32,170,180,32,32 
2170 DATA 180,109,110,180,109,32, 

183,183,112,32,180,32 
2180 DATA 180,32,170,180,32,170,180, 

98,170,110,109,32 
2190 DATA 32,125,32,110,32,32 
2200 DATA 180,32,170,108,175,110, 

108,175,186,108,175,110 
2210 DATA 108,175,175,180,32,32,108, 

175,186,180,32,170 
2220 DATA 186,175,32,108,186,32,170, 

32,109,108,175,175 
2230 DATA 180,32,170,180,32,170,108, 

175,186,180,32,32 
2240 DATA 108,110,109,180,32,109, 

108,175,186,32,180,32 
2250 DATA 108,175,186,109,175,110, 

108,177,186,180,170,32 
2260 DATA 32,125,32,108,175, 

32 

10 MODE1:D =1280/40/2 
20 DIM A(311):FOR T=0 TO 311: 

READ A(T):NEXT 
30 VDU23,224,240,240,240,240,0,0,0,0 
40 INPUT""A WORD NOT MORE THAN 10 

CHARS LONG ",B$ 
50 IF LEN(B$)>10 THEN CLS:PRINT"TOO 

LONG":GOT040 
60 PX=0:PY= 700 
70 FOR P=1 TO LEN(B$):A$= 

M1D$(B$,P,1):PROCCHAR:NEXT 
80 G =GET:CLS:GOTO 40 
90 DEF PROCBLOCK 
100 VDU 5 
110 FOR T=0 T03 
120 IF B AND 2 A T THEN MOVE 0+ (T AND 

1)'D,0 - (T AND 2)*D/2:VDU 224 
130 NEXT 



Block letters on the Dragon 

140 VDU 4 
150 ENDPROC 
160 DEF PROCCHAR 
170 C =ASC(A$) —65 
180 IF C= —33 THEN 220 
190 IF C.<0 OR C>25 THEN ENDPROC 
200 FOR X=0 TO 2:FOR Y=0 TO 

3:B = A(X +Y .3 + C'12) 
210 VDU 29,PX+ X*D*2;PY—Y'D*2;: 

PR 0 C B LOC K: N EXT:N EXT 
220 PX= PX +128 
230 ENDPROC 
240 DATA 7,3,5,5,0,5,7,3,5,5,0,5,7,3,4,13,12, 

1,5,0,5,13,12,1 
250 DATA 7,3,5,5,0,0,5,0,0,13,12,5,7,3,4,5,0, 

5,5,0,5,13,12,1 
260 DATA 7,3,1,13,12,4,5,0,0,13,12,4,7,3,1,5, 

0,0,7,3,1,5,0,0 
270 DATA 7,3,5,5,0,0,5,8,4,13,12,5,5,0,5,13, 

12,5,5,0,5,5,0,5 
280 DATA 3,7,1,0,5,0,0,5,0,12,13,4,0,11,1,0, 

10,0,0,10,0,13,14,0 
290 DATA 5,8,1,13,1,0,7,4,0,5,2,4,5,0,0,5,0, 

0,5,0,0,13,12,4 
300 DATA 13,8,5,5,5,5,5,0,5,5,0,5,13,0,5,7,4, 

5,5,9,5,5,2,5 
310 DATA 7,3,5,5,0,5,5,0,5,13,12,5,7,3,5,5,0, 

5,7,3,1,5,0,0 
320 DATA 7,3,5,5,0,5,5,4,5,13,14,5,7,3,5,5,0, 

5,7,11,1,5,0,5 
330 DATA 7,3,5,13,12,4,0,0,5,13,12,5,3,7,1,0, 

5,0,0,5,0,0,5,0 
340 DATA 5,0,5,5,0,5,5,0,5,13,12,5,5,0,5,5,0, 

5,5,0,5,2,6,0 
350 DATA 5,0,5,5,0,5,5,5,5,13,13,5,5,0,5,2,6, 

0,8,9,0,5,0,5 
360 DATA 5,0,5,13,12,5,0,5,0,0,5,0,3,3,5,0,8, 

1,8,1,0,13,12,4 

1M1141 
10 DIM L(2,3,25) 
20 FOR J = OT025:FOR K = OT03: 

FOR L= OT02:READ L(L,K,J): 
NEXT L,K,J 

30 CLSO 
40 PR INT@480," INPUT WORD ?";B$; 

... and on the Spectrum 

50 A$=INKEY$:IF (A$ < "A" OR A$ > "Z") 
AND A$< >CHR$(8) AND 
A$< >CHR$(13) AND A$< >"111" 
THEN 50 

60 IF A$=CHR$(13) THEN 110 
70 IF A$=CHR$(8) AND B$=" THEN 50 
80 IF A$=CHR$(8) THEN B$= LEFT$ 

(B$,LEN(B$) — 1):GOT030 
90 IF LEN(B$) >9 THEN 50 
100 B$= B$+A$:GOT030 
110 IF B$=" THEN CLS:END 
120 CLSO:PRINT@480," COLOUR (1 —8)?"; 
130 A$=INKEY$:IF A$<"1" OR A$>"8" 

THEN 130 
140 CLSO:CL=VAL(A$) 
150 FORY= OT03:FORC =1TOLEN(B$): 

FORX = 0T02 
160 IF MID$(8$,C,1)=" ❑ " THEN PRINT 

CHR$(128);:GOT0180 
170 PR1NTCHR$(84+ CL*16+ L(X,Y, 

ASC( M1D$( B$,C,1)) — 65) ); 
180 NEXTX,C:PRINTSTRING$(32— 

POS(0),128);:NEXT Y 
190 B$ ="":GOT040 
1000 DATA 42,40,38,38,28,38,42,40,38, 

38,28,38,42,40,30,39,31,36,38,28, 
38,39,31,36 

1010 DATA 42,40,38,38,28,28,38,28,28,39,31, 
38,42,40,30,38,28,38,38,28,38,39,31,36 

1020 DATA 42,40,36,39,31,30,38,28,28,39,31, 
30,42,40,36,38,28,28,42,40,36,38,28,28 

1030 DATA 42,40,38,38,28,28,38,29,30,39,31, 
38,38,28,38,39,31,38,38,28,38,38,28,38 

1040 DATA 40,42,36,28,38,28,28,38,28,31,39, 
30,28,41,36,28,33,28,28,33,28,39,35,28 

1050 DATA 38,29,36,39,36,28,42,30,28,38,32, 
30,38,28,28,38,28,28,38,28,28,39,31,30 

1060 DATA 39,29,38,38,38,38,38,28,38,38,28, 
38,39,28,38,42,30,38,38,37,38,38,32,38 

1070 DATA 42,40,38,38,28,38,38,28,38,39,31, 
38,42,40,38,38,28,38,42,40,36,38,28,28 

1080 DATA 42,40,38,38,28,38,38,30,38,39,35, 
38,42,40,38,38,28,38,42,41,36,38,28,38 

1090 DATA 42,40,38,39,31,30,28,28,38,39,31, 
38,40,42,36,28,38,28,28,38,28,28,38,28 

1100 DATA 38,28,38,38,28,38,38,28,38,39,31, 

38,38,28,38,38,28,38,38,28,38,32,34,28 
1110 DATA 38,28,38,38,28,38,38,38,38,39,39, 

38,38,28,38,32,34,28,29,37,28,38,28,38 
1120 DATA 38,28,38,39,31,38,28,38,28,28,38, 

28,40,40,38,28,29,36,29,36,28,39,31,30 

Each of these programs works in a similar 
way. They begin by DIMensioning arrays for 
the letters. The Spectrum also POKES a system 
variable to turn CAPS LOCK on. The 
Spectrum program uses four arrays—one for 
each row of the letters, while the other 
computers' versions just use one array. 

The delay you probably meet when you 
RUN the program is caused by the computer 
READing the DATA into the array, or arrays. 
The Spectrum version uses Lines 290 to 390 
to do this, while the Acorn, Dragon and 
Tandy programs do it in just one Line (Line 
20). 

Both the Acorn computers then set up a 
UDG, since only the BBC has block graphics, 
and it can only use these in MODE 7. The 
UDG is used to represent each possible 
graphic, in MODE 1, by PRINTing it several 
times in slightly different positions so that it 
forms the correct character. 

The computers now start the main section 
of the program by letting you enter a word. 
The Spectrum, Commodore 64, Acorn, 
Dragon and Tandy computers let you have up 
to a maximum of 10 letters. The Vic gives you 
just 5 as it has a very small screen. 

Each computer performs various checks to 
make sure that you have typed in a valid 
string, and then begins a FOR ... NEXT loop to 
PRI NT the large letter. This loop is the same as 
the one in the last program in this article, in 
that it carries on until the computer has run 
through it once for every character in the 
string. 

The Spectrum actually uses four of these 
loops, one for each row of block graphics as 
the large letters are all four characters tall. 
The loop adds a group of three characters to 
s$, for each letter in the string. When there 
are no more letters in the string, the computer 
PRINTs s$, which will be the next line of 
graphics characters. 

The string which is added to s$ every time 
is changed from loop to loop. As you can see 
from lines 420, 450, 480, and 510, the first 
string which is added is a$, then b$, c$, and 
finally d$. Each of these is in fact an array, and 
the calculation in brackets after it determines 
which element of the array is added to s$. 

Once the Spectrum has PRINTed all four 
rows, it goes to Line 400 to let you enter 
another word. 



The Commodore programs start the main 
loop in Line 185. In Line 200 the computer 
sets A$ equal to the current letter from your 
string. Then the variable A is set to the ASCII 
code of this letter, less 64. B is a variable 
which the computer uses to PRINT the charac-
ters later on in the program, and is set up in 
Line 220. 

Line 225 uses the ON ... GOTO facility to 
send the computer to one of four lines, each 
of which PRINTS one of the rows of a letter. In 
fact the line reads ONXGOTO ..., where X is 
the control variable of the loop in Line 185. 

When the computer jumps to one of these 
four lines, it starts yet another FOR ... NEXT 
loop, which it uses to PRINT out the three 
characters in each row of the large letter. The 
new loop is from B + 1 to B + 3. B was set 
equal to a value calculated from the current 
character's ASCII code, and is used to call 
up the correct element of the array. 

Once the computer has PRINTed each of the 
three characters, it PRINTs a space (to separate 
this letter from the next) and goes on to the 
NEXT value of Y (this makes the computer 
PRINT the next row of the next letter in your 
string). As soon as the three characters in the 
top row of all the letters in your string have 
been PRINTed, the computer goes to the NEXT 
value of X. This means that the computer does 
the same process again, but for the second 
row, and then the third and fourth rows, of 
characters. As there are only four rows of 
characters for each letter, the computer re-
turns to let you enter another string. 

Once the computer has set up two variables, 
PX and PY, it starts its first loop. The loop, in 
Line 70, simply calls PROCCHAR once for 
every character in the string you entered. 

PROCCHAR first sets the variable C equal to 
65 less than the ASCII code of the current 
letter. If C equals —33 (in other words if the 
actual ASCII code of the letter is 32, the code 
for a space) then the computer jumps to Line 
220, which adds 128 to the variable PX to 
move the PRINT position one big-letter-space 
to the right—effectively a space. 

Line 190 makes sure that the current letter 
is between A and Z. If it is not, the computer 
returns from the PROCedure to Line 70. 

The two loops in Line 200, make the 
computer run through Lines 200 and 210 
once for every character space that each letter 
takes up (or twelve times in all). These two 
lines change the cursor's origin (the position 
0,0) to the start of the next letter's position, 
and then call PROCBLOCK. 

PROCBLOCK, which starts in Line 90, uses 
the graphics cursor to PRINT the UDG up to 
four times in different places, so that the 
result is the same as a block graphic from one 
of the other computers. The complicated-
looking Line 120 works out whether the 
computer needs to PRINT the UDG for that 
value of T. T is the control variable of the FOR 
... NEXT loop in this PROCedure, and goes 
from 0 up to 3. The calculation uses logical 
arithmetic (the function AND), and an IF ... 
THEN condition. If it does need to PRINT a 
UDG for any value of T, the computer MOVES 
the graphics cursor to the correct position. 

The DATA held in the array comes in at this 
point. Each piece of DATA represents a four 
digit binary number—so the maximum is 
1111 in binary, which equals 15. Each bit of 
the binary number refers to one of the four 
quarters of a graphics square, as shown in the 
diagram on page 819. (Block graphics are just 
a graphics character split into quarters, and 
with one or more of the quarters filled in). 

When the computer finds a letter in the 
string you entered, it takes each character 
square for that letter and converts the corre-
sponding number from the DATA into binary. 
This binary number is then used in Line 120 
to determine which, if any, of the four 
quarters are filled in. 

After the computer has finished each char-
acter, it returns from PROCBLOCK to 
PROCCHAR, and finds the next character for 
the current letter. When all twelve character 
squares of each letter have been PRINTed by 
PROCB LOCK, the computer increases the vari-
able PX by 128 to move the PRINT position one 
space on, ready for the next letter, and so on. 

After every letter has been PRINTed from 
the string you entered, the computer goes 
back to Line 80, where it waits for you to 
press a key before clearing the screen, and 
starting again. 

NA !HI 
As soon as you have entered your text and 
pressed 1 ENTER 1, the computer jumps to Line 
110. You can then choose which colour you 
want the computer to PRINT your text in. 
Lines 130 and 140 deal with setting the 
colour, and then the computer starts three 
FOR ... NEXT loops. 

Line 160 PRINTs a black space whenever a 
space is the next character in the string you 
entered. After PRINTing this, the computer 
jumps to Line 180, missing out Line 170. 

Line 170, although it looks extremely 
complicated, just PRINTs the next block 
graphic character for the current letter. The 
hard part is the calculation in brackets which 
works out the CH R$ number. The first bit of it  

adds 84 to the colour number*16, and adds 
this to the relevant item of DATA from the 
array. The L(X,Y,ASC(M1D$(B$,C,1)) —65)) 
determines which element of the array L is 
used in the calculations, as explained below. 

The DATA in the array is the CH R$ numbers 
of the various different block graphics (the 
basic, black and green, ones) minus 100. 
They are arranged so that the twelve numbers 
for each letter (four rows of three characters) 
follow on, so the thirteenth number in the 
array refers to the letter B, the twenty fifth 
number is the first character for C, and so on. 

When the computer works out which num-
ber in the array to read, Line 170 uses the 
function ASC to give the character number of 
the letter from your string, and it uses M 1 D$ to 
work out which letter in your string it is 
dealing with. The three numbers in brackets 
after the MID$ refer to which string is being 
`cut up' (here B$); how many characters into 
the string the first letter you want is (here C, 
the control variable from one of the FOR ... 
NEXT loops set up in Line 150); and how many 
characters from this point (here one). 

The semi-colon after the calculations in 
Line 170 prevent the next PRINT statement 
from starting on a new line, so that all the 
letters appear on the same line. 

Line 180 first does two NEXT statements, to 
go onto the next value for X (which governs 
which of the three characters in each row of 
the current character is PRINTed). The second 
NEXT, for the next value for C is simply added 
on to the first by putting ,C after the X. 

The second part of Line 180 PRINTs 
enough black spaces to move the PRINT 
position onto the next line, so that the 
computer can PRINT the next row of 
graphics—there are four rows in all. When the 
last loop started in Line 150 has finished, 
your word will be on the screen in your 
chosen colour, and in large type. Line 190 
makes the computer wait for you to press a 
key, after which the computer jumps back to 
Line 40 to let you IN PUT another word. 

When you have had enough of the 
program, or want to return to BASIC, you 
can either enter a 'null' string (press 'ENTER 1 
before typing any letters when the computer 
expects your word), or press 1BREAKI. 

"77  RIZ Ell  NCI hi 
The programs in this article have showed just 
two possible ways of creating impressive type 
faces to brighten up your programs' title 
pages. The next article will show another way 
of creating a very different sort of typeface, 
and will explain how you can take letters 
created by all of the methods and use them in 
your own programs. 



Unlike a tape recorder, a disk drive 
can be complicated to set up and 
use. This article helps you to avoid 
the common mistakes, and explains 
the BASIC you need. 

If you decide that it's time for something a bit 
quicker and easier than tape storage, disk 
units have a lot to offer for the extra cost. But 
setting up a disk/computer combination is 
rather more complicated than using a tape 
machine, and you have to become accustomed 
to using new commands to control it. 

This article deals with the procedure for 
connecting and using the most popular disk 
drive units for each computer. The Spectrum 
instructions are an exception, since they cover 
the Sinclair Microdrive which is the most 
practical and popular alternative to tape, 
rather than disk units for this machine, which 
are far less common and not specifically 
designed for the job. The Commodore 64 and 
Vic 20 notes apply to the CBM 1540 and 1541 
disk units. The BBC notes apply equally to all 
drives—but as interfaces are still being devel-
oped for the Electron, this is not covered, and 
the Acorn instructions apply only to the 
BBCB. The Dragon instructions are for 
Dragon Data's own disk unit. 

The first thing you should do when you get 
your disk drive is check to make sure that 
there is no transit packing inside it—some 
manufacturers put a piece of cardboard inside 
to protect the head. If your drive has one of 

Switching on 
Be very careful when switching your disk 
drive on or off. Always make sure that 
there is no disk in it before you do so. 
Disks are very sensitive and it is possible 
to erase part of the directory if the chips 
in the disk drive are powered up—or 
down—when a disk is inside. The direc-
tory is on the part of the disk where the 
head usually rests so it is particularly 
vulnerable. And if the directory is cor-
rupted it is impossible to retrieve the 
information that is on the rest of the disk. 
The software has no way to locate where 
the files are stored. 

these, you should take it out—but keep it, just 
in case you want to move your drive around in 
the future. Then you are all set to plug in your 
drive to your computer. 

Although you can get interfaces to connect 
various models of disk drive to the Spectrum, 
this is an expensive option and the most 
popular alternative is Sinclair's own Microdr-
ive based on a miniature tape cartridge. The 
advantages of it over a 'real' disk drive are 
mainly in terms of price, but also, it is easy to 
connect the drive to your Spectrum. And 
several Microdrives (a maximum of eight) can 
be linked to increase your storage, although 
you only access one at a time. 

However, you do need to have a Sinclair 
Interface 1 as well as the Microdrive unit 
itself, which effectively doubles the cost of the 
first drive (even if you have more than one 
unit, you only need one Interface. 

The Microdrive comes with a short ribbon 
cable, and you should plug this into the drive 
and into the Interface 1. Each Microdrive also 
has a separate hard connector used for linking 
to another drive in daisy chain form. 

You should connect the Interface 1 to the 
Spectrum, of course, too. Sinclair suggest 
that you do this permanently—by fastening 
the screws on the interface to the computer 
after plugging into the edge connector. You 
may find it better not to do this, though, as 
some software does not work if the interface is 
plugged in and it is useful to be able to remove 
it easily. 

Once you have connected the interface to 
your Spectrum, and the Microdrive to the 
interface, you can turn on. The Microdrives 
are powered from the computer, however 
many you have, so you just turn on the 
computer in the usual way. But do not power 
up with a cartridge in the slot, you may 
corrupt the information stored on it. 

To check whether or not you have correctly 
plugged everything in, you can insert a 
cartridge into the slot in the Microdrive, and 
then type RUN and press (ENTERS  (if you have 
been using the computer, you must NEW it 
first). The Microdrive should now come to 
life—the red light on its front will light up,  

and you should hear a whirring sound as the 
tape inside spins round. If this happens, your 
drive is correctly connected. If not, then you 
should check your connections and try again. 

If you have more than one Microdrive 
connected, this test will only access the first of 



INTERFACING YOUR  
MICRODRIVE 

DAISY CHAINING  
CALLING THE CATALOGUE  

OR DIRECTORY  

DANGERS TO DISKS  
ACORN AND VIC MODIFICATIONS  

FORMATTING DISKS  
HANDLING FILENAMES  
USING THE SOFTWARE  

them. To test the others, type CAT, followed 
by the number of the Microdrive (counting 
away from the interface). 

Plug your Commodore disk drive into the 

mains, as it uses its own power supply, and 
turn on. You should then see a green light, 
which simply shows when the power is on, 
and the red light should flash on and then off. 
If this does not happen, the power is not 
reaching it—or your drive is faulty. 

If you have more than one peripheral 
connected to your computer, for example, a 
disk drive and a printer, then you should take 
care how you switch each one on. The 
Commodore 64 in particular is rather sensi-
tive as to the order in which you do it—you 
may even destroy the I/O chip. Contrary to 
what is said in some early Commodore peri-
pherals manuals, you should always switch 
the computer on first, followed by the disk 
drive (followed by any other disk drive if you 
daisy-chain them), followed by the printer. It 
does not matter, though, what order you 
connect them up in—you can either join the 
printer to the disk drive, and the drive to the 
computer, or join the drive to the printer, and 
then the printer to the computer. 

Before a Commodore 1541 disk drive can be 
used with a Vic 20, the speed at which the unit 
runs. may have to be adjusted. To do this, you 
will have to consult your manual for the 
appropriate commands. 

The instruction to set up the disk drive 
must be entered before you enter any other 
instructions. If the disk drive is being called 
from a program, the instruction is normally 
put at the very beginning of the program. 
Once you enter it, the command stays in force 
until power is switched off. 

Probably the most important point to note is 
that before you can fit a disk drive to your 
BBCB, you must first add eleven new chips to 
the computer. These comprise a 'Disc Filing 
System ROM' (DFS), of which there are 
several available, and ten others which pro-
vide the interface for the drive unit. These can 
be fitted for you by a dealer, or bought as a kit 
to fit yourself—usually a cheaper option. 

Once you have fitted these chips into your 
BBC, you can plug in your disk drive. Its 
ribbon cable plugs directly into the disk port 
underneath your computer. Your disk drive 
may be powered in one of two ways depend-
ing on the design—either using the 
computer's power supply, or from a separate 
supply. The latter type needs to be plugged 
into the mains. 



If your disk drive relies on the computer 
for its power, it will probably have a lead for 
this purpose. If it has, you should plug it into 
the power supply of your computer—this is 
situated next to the disk drive port. 

Dragon Data disk drives plug into the 
computer's cartridge port—as does the most 
popular independent unit. The first thing you 
plug in, in fact, is a cartridge containing the 
software needed to use the disk drive. This 
has a port into which you can then plug the 
disk drive. Power for the disk drive comes 
from a separate mains connection. 

FORMATTING 
Before you can use any disk to store inform-
ation, you have to set it up—this is called 
formatting, or initializing a disk. All that this 
does is to organize the way information is 
stored on the disk. 

When you do this with the Sinclair Micro-
drive, it detects whether any section of the 
tape inside the cartridge is not reliable enough 
to use—this is why, when you FORMAT a 
cartridge, the amount of storage space will not 
always be the same. Normal disks are divided 
into ten or eleven imaginary sections, like 
slices of cake. While the tracks and sections of 
a disk do not have actual physical boundaries, 
at least none which you could see, they are 
precise limits, which the disk drive recogn-
izes. This is known as soft sectoring, since it is 
the software which sets up the boundaries. 

Here are the commands you can use to 
format a new disk (or cartridge): 

a 
FOR MAT"M";1;"cartridge name" 

OPEN 1,8,15,"N EW:(diskname), (two letters for 
identification)" 

You could also open a logical file, and then use 
PRINT # , but the above command is simpler. 
There is an alternative to formatting a disk, 
which is to INITIALIZE it. This is much more 
rarely used—generally when you are working 
on many disks and there is a risk of corruption 
of existing data. You should normally use the 
form given above. 

II 
The commands you should use with a BBC 
disk drive to format a disk vary, depending 
upon which disk ROM you have. 

Acorn's own disk system needs a whole 
program to format a disk, and the program 
comes with the system. 

DSKINIT 

Formatting a disk, or cartridge, actually takes 
about a minute—again, this depends upon 
what disk drive and computer you have. 

Once you have formatted a disk, you do not 
need to do so again, although you can. Of 
course, if you do reformat a disk, it will be 
wiped clean, and so you lose whatever was 
stored on it. If you have finished with an 
entire disk's collection of files, this can be a 
useful way of erasing every file at one go. 

FILENAMES 
Everything which you store on either tape or 
disk has to have a filename. When you SAVE 
something on tape, you give a name to 
whatever you are storing simply by putting 
the name in quotes after the SAVE command. 
Disk files have to be given a name too. 

The Spectrum Microdrives allow you to 
have a filename up to 10 characters long; the 
Commodore disk unit has a maximum of 16 
characters; the Acorn may support filenames 
of up to 10 characters, while the Dragon can 
only have filenames up to 8 characters long. 

Filenames form a much more important 
part of a disk system, since each disk has a 
directory which is constantly, and automati-
cally, updated by the computer whenever an 
amendment is made to what is stored on the 
disk. This is explained in more detail further 
on in this article. 

USING YOUR DISK DRIVE 
As with printers, joysticks, light pens, and 
most other peripherals, the key to using your 
disk drive is software—in fact, the quality of a 
disk drive is often judged by the software 
support that comes with it, rather than by the 
hardware. This is more logical than it sounds, 
because it is not really the disk unit that you 
are going to use, but the software which 
controls it. 

On the Spectrum with Microdrive(s), you do 
not use a 'general' command to direct output 
which is the way most computers work with a 
disk drive, but use a slightly different version 
of the normal tape SAVE, LOAD, and VERIFY 
commands. The advantage of this over a 
general command is that you can use both 
cassette and Microdrive without having to 
continually change the 'general' state. 

The new LOAD command looks like this: 

LOAD *WO ;"filename" 

Here, the asterisk tells the Spectrum that the 

command is part of the new extended BASIC 
present in Interface 1—most of the com-
mands which can be used with the Interface 1, 
but are also available normally, use this 
character, while special commands which are 
unique to the interface do not. 

The m in quotes tells the computer that the 
Microdrive is the peripheral to which the 
information is being sent, while the 1 inside 
semi-colons tells it the number of the Micro-
drive (remember you can have up to 8 in use). 

To save information on the Microdrive 
cartridge, you will also need to use this new 
SAVE command, which works in the same way: 

SAVE *WO ;"filename" 

You can also use the VERIFY and MERGE 
commands with the Microdrives, by adding 
the same set of information after the com-
mand (so you would use, for instance, VERIFY 
*WO ;"filename"). 

One important point about LOADing, 
VE R I FYing or M ERG Eing the programs stored 
on a Microdrive cartridge is that you must be 
specific about the filename of any program or 
block of CODE and give this exactly as in the 
original SAVE command. You cannot simply 
use the equivalent form of the tape command 
LOAD"". Luckily, though, you do not need to 
keep efficient records of what you called your 
latest program, as you can ask the computer to 
tell you what is on any one cartridge. 

The command you should use for this is 
CAT followed by the number of the Micro-
drive that you are using (this will usually be 
1). If you type this and press !ENTER , the 
Microdrive's red light will light up, and after 
a few seconds the CATalogue of what is on the 
cartridge, together with the amount of storage 
space remaining, is PRINTed on the screen. 
When you use this command, the very first 
thing that is PRINTed up is the name of the 
cartridge, which you assigned when you 
FO R MATted it. 

There is another command, too, which you 
can use with your Microdrive: ERASE. This 
does what you would expect it to—erases a file 
from the Microdrive cartridge. It takes the 
same form as the LOAD and SAVE commands, 
except that it does not need the asterisk. So 
this command: 

ERASE "m";1;"badprogram" 

would wipe out a file named badprogram 
from the cartridge in Microdrive 1. 

Unlike cassette based software, you need 
this ERASE command with Microdrives, since 
you cannot store your new files over anything 
else—and you cannot have more than one file 
with the same name on a cartridge, either. So, 
if you have finished with any particular file on 



= 



cartridge, you should erase it to make room 
for more programs. 

I  Cc   
The commands you use to access your Com-
modore disk drive are almost the same as 
those for tape—the LOAD and SAVE com-
mands simply have an extra ,8 after the 
filename. So, to SAVE a program named 
INPUT to disk, you would type in this 
command: 

SAVE"I N PUT",8 

There is also an extra command which is very 
useful—it lets you see what programs are 
stored on the disk. To do this, enter: 

LOAD"$",8 

When the message READY appears, LIST the 
program, and a list of the files will be PRINTed 
on the screen. 

To erase a file, or a program, from your 
disk, you should use this command: 

OPEN 1,8,15,"SCRATCH: filename" 

With this command, you can delete as many 
files as you like, assuming they are on the 
disk, simply by including their name inside 
the string. You should separate each filename 
by a comma. (And don't forget to CLOSE the 
file.) 

If you want to erase everything on a disk, 
you can do so either by reformatting, or 
initializing, the disk, or with this command: 

OPEN 1,8,15,"S:*": CLOSE 1 

This command also shows another point 
about the disk commands—you can abbrevi-
ate the commands inside the string to a single 
letter. Here, for example, the SCRATCH is 
reduced to just S and you don't even need to 
follow it by a full stop. 

There may be occasions when you want to 
rename a file that you have already stored on 
disk. One way would be to LOAD the file into 
your computer, erase it from the disk, and 
then SAVE it again with the new name. But this 
is very risky because you end up with a 
situation where the only copy of the program 
is the one in the computer—and one power 
cut would lose the lot. So Commodore have 
provided a feature which does the job for you 
in a much simpler way—the RENAME com-
mand. To rename a file called UDG 
GENERATOR to one named UDGED, you 
can use this command: 

OPEN 1,8,15,"R:UDGED = UDG 
GENERATOR": CLOSE 1 

As you can see, the first filename in the string 
is the new one, and the second is the old. 

El 
You do not need to tell your BBC that you are 
using a disk drive, as it detects this automati-
cally if the unit is plugged in. If you want to 
use a tape recorder while the disk drive is 
plugged in, you should first enter *TAPE. 
When you want to return to disk again, you 
can enter *DISK. 

Once you have a formatted disk and your 
disk drive all plugged in, you probably want 
to use it to SAVE and LOAD your programs. 
Unless you just want to use commercial 
software from disk, your first task is to store 
something on a disk. 

To SAVE a program, you use exactly the 
same SAVE command as you would for tape 
(assuming that the computer is ready to pass 
information to disk—see above). You can 
LOAD programs back from disk, too, using the 
normal LOAD command. 

There are several new commands, too, 
provided by both the computer's ROM, and 
the new Disk Filing System chip that has to 
be fitted. Many commands work on both tape 
and disk. Probably the most useful of these is 
the *CAT command. This PR INTs up a list of all 
the files stored on the disk in the drive. And 
although you need to know the filename of 
something before you can LOAD it, this 
command means that you do not need to 
remember the names of all your files, as it 
only takes a few seconds for the catalogue to 
be PRINTed on the screen. 

You can also use a slightly fuller version of 
this command—'INFO. This gives more in-
formation about each file, but as it works 
slightly differently on each DFS, you should 
look at your manual to find out more about it. 

You can delete a file that you have finished 
with by using this command: 

*DELETE ill filename 

You should note here, that the filename is not 
in quotes or brackets but it can be, unlike 
names of programs on tape. 

There's also a command that can rename a 
file which you have already stored on disk: 

• R ENAM E ❑ oldname ❑ newname 

As you can see from this command, you 
should put the current name of the file after 
the RENAME, followed by a space, and then 
the name you want the file to have. 

There are other special purpose commands 
you can use, too, but which of these are 
available depends upon which Disk Filing 
System you have. Your DFS manual will list 
all other new commands you can use, but if 
*HELP is available with the DFS, it should 
print out the possible commands for you. 

The Dragon commands to SAVE and LOAD 
programs to and from disk are actually sim-
pler than those for tape—instead of CSAVE, 
which is the tape command, you just use 
SAVE"FILENAME". The same also applies to 
loading programs from disk—you do not need 
the letter C at the beginning of each 
command. 

When you first turn on, the VERIFY option 
is set, so that everything you store on disk is 
verified automatically. You can turn this off 
by entering, quite simply, VERIFY OFF. If you 
then want to reinstate it, enter VERIFY ON. 

When you SAVE something on to disk, 
although you just type SAVE"FILENAME" and 
then press 'ENTER , the computer adds a suffix 
to the end of the filename. This can be one of 
four things—BAS, which signifies a BASIC 
program; BIN, which signifies a machine code 
program; BAK, which indicates that the file is 
a BAcKup of another file on the same disk; or 
DAT, which indicates that the file is simply 
DATA—not a program. 

When you LOAD a BASIC program from 
disk into your Dragon, you do not need to 
type the suffix as well—just the filename 
which you gave the program will do. 

You can see how this works by SAVEing a 
short program, and then entering: 

DIR 

You should then see the filename of your 
program appear on the screen, with the suffix 
.BAS. DIR, the directory command, is very 
useful—what it does is to PRINT onto the 
screen a list of every program stored on the 
disk, together with how many bytes of mem-
ory each file takes up, and the amount of 
storage space left on the disk. 

As with most disk systems, you can 
RENAME a file already stored on disk. Enter: 

RENAME"OLDNAME.BAS" TO 
"N EWNAM E. BAS" 

This command renames the BASIC program 
OLDNAME as NEWNAME. 

As well as storing files, or programs, on 
disk, you can also erase them from the disk. 
This is a useful command, as, unlike on a tape 
recorder, you cannot store a new program on 
an old one—but you can erase the old one and 
then store the new file in its place. 

To erase a file named USELESS.BAS you 
would enter this: 

K I LL"USE LESS. BAS" 

This rather dramatic-sounding command 
simply deletes the file you tell it to delete in 
the quotes. 



VOLUME 3 OF  

COMINGSOON... 

At last you can exploit 
your MACHINE CODE skills 
to the full: an exciting 
game—CLIFFHANGER- 
gives you arcade thrills and 
is a real challenge to your 
game's abilities. But it is 

much more than that, it contains a library of 
routines that will help you in your own game 
construction. Also in MACHINE CODE amongst 
other articles is a neat INTERRUPT CLOCK that 
runs simultaneously with BASIC programs. 

Continue to build up your practice and knowledge 
of BASIC. Programs include an examination of 
MECHANICS and a look at the practicalities of 
CONIC SECTIONS; also included, among others, 
are techniques for SPEEDING UP BASIC. 

In GAMES there is a BUSINESS STRATEGY 
game, a tricky WORD GAME, a SUPERFRUIT 
gambling game—see if you win or lose—plus others. 

More APPLICATIONS for your Micro include an 
exploration of the possibilities of CODEWRITER 
programs; a ROOM DESIGN PLANNER; and a 
SOUND ANALYSER to digitalize recordings. Also 
a handy CALENDAR GENERATOR allows you to 
see at-a-glance how to plan your time throughout 
the year. 

ROBOTS feature in PERIPHERALS—just how 
can you control them? 



-.I When in ROM ... well not always, 
especially if you ADD INSTRUCTIONS 
to make your micro respond to your very 
own BASIC 

Tired of your terrible typing? Take out 
the tears with a TEXT EDITOR program 

-../Keep on making it big with the second 
part of DISPLAY TYPEFACES 

-J Join the uptown gold diggers and find 
a viable vein in the first part of a GOLD 
MINING business strategy game 

Acorn and Commodore users! Find out 
about FUNCTION KEYS and save time 
with some special-purpose 
programming 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

